University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 81P
Calculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at λ = 4.0 × 10−6 C/m.
Calculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at λ =4.0 x 10-6 C/m.
A very long, straight wire has charge per unit length 2.60×10−10 C/m .
At what distance from the wire is the electric field magnitude equal to 2.90 N/C?
Express your answer with the appropriate units.
Chapter 5 Solutions
University Physics Volume 2
Ch. 5 - Check Your Understanding What would be different...Ch. 5 - Check Your Understanding What would be different...Ch. 5 - Check Your Understanding What is the electric...Ch. 5 - Check Your Understanding How would the strategy...Ch. 5 - Check Your Understanding How would the above limit...Ch. 5 - Check Your Understanding the electric field 100k...Ch. 5 - There are very large numbers of charged particles...Ch. 5 - Why do most objects tend to contain nearly equal...Ch. 5 - A positively charged It'd attracts a small piece...Ch. 5 - Two bodies attract each other electrically. Do...
Ch. 5 - How would you determine whether the charge on a...Ch. 5 - An eccentlic inventor attempts to levitate a cork...Ch. 5 - When a glass rod is lubbed with silk, it becomes...Ch. 5 - Why does a car always attract dust right after it...Ch. 5 - Does the uncharged conductor shown below...Ch. 5 - While walking on a mg, a person frequently becomes...Ch. 5 - Compare charging by conduction to charging by...Ch. 5 - Small pieces of tissue are attracted to a charged...Ch. 5 - Trucks that cany gasoline often have chains...Ch. 5 - Why do electrostatic experiments work so poorly in...Ch. 5 - Why do some clothes cling together after being...Ch. 5 - Can induction be used to produce charge on an...Ch. 5 - Suppose someone tells you that rubbing quartz with...Ch. 5 - A handheld copper rod does not acquire a charge...Ch. 5 - Suppose you place a charge q near a large metal...Ch. 5 - Would defining the charge on an electron to be...Ch. 5 - An atomic nucleus contains positively charged...Ch. 5 - Is the fore between two fixed charges influenced...Ch. 5 - When measuring an electlic field, could we use a...Ch. 5 - During fair weather, the electric field due to the...Ch. 5 - If the electric field at a point on the line...Ch. 5 - Two charges lie along the x-axis. Is it nue that...Ch. 5 - Give a plausible argument as to why the electric...Ch. 5 - Compare the electric fields of an infinite sheet...Ch. 5 - Describe the electric fields of an infinite...Ch. 5 - A negative charge is placed at center of a ring of...Ch. 5 - If a point charge is released fmm rest in a...Ch. 5 - Under what conditions, if any, will the trajectory...Ch. 5 - How would you experimentally distinguish an...Ch. 5 - A representation of an electric field shows 10...Ch. 5 - What is the ratio of the number of electlic field...Ch. 5 - What are the stable orientation(s) for a dipole in...Ch. 5 - Common static electricity involves charges ranging...Ch. 5 - If 1.801020 electrons move through a pocket...Ch. 5 - To stat a car engine, the car battery moves...Ch. 5 - A certain lightning bolt moves 40.0 C of charge....Ch. 5 - A 2.5-g copper penny is given a charge of 2.0109C...Ch. 5 - A 2.5-g copper penny is given a charge of 4.0109C...Ch. 5 - Suppose a speck of dust in an electrostatic...Ch. 5 - An amoeba has 1.001016 protons and a net charge of...Ch. 5 - A 50.0-g ball of copper has a net charge of 2.00C....Ch. 5 - What net charge would you place on a 100-g piece...Ch. 5 - How many coulombs of positive charge are there in...Ch. 5 - Two point particles with charges +3C and +5C are...Ch. 5 - Two charges +3C and +12C are fixed 1 m apart, with...Ch. 5 - In a salt crystal, the distance between adjacent...Ch. 5 - Protons in an atomic nucleus ale typically 1015 m...Ch. 5 - Suppose Earth and the Moon each carried a net...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Where must q3 of the preceding problem be placed...Ch. 5 - Two small balls, each of mass 5.0 g, are attached...Ch. 5 - Point charges q1=2.0C and q3=4.0C arelocated at...Ch. 5 - The net excess charge on two small spheres (small...Ch. 5 - Two small, identical conducting spheres repel each...Ch. 5 - A charge q=2.0C is placed at the point P shown...Ch. 5 - What is the net electric fore on the charge...Ch. 5 - Two fixed particles, each of charge 5.0106C , are...Ch. 5 - The charges q1=2.0107C, q2=4.0107C, and q3=1.0107C...Ch. 5 - What is the force on the charge q at the...Ch. 5 - Point charges q1=10C and q2=30C are fixed at...Ch. 5 - A particle of charge 2.0108C experiences an upward...Ch. 5 - On a typical clear day, the atmospheric electric...Ch. 5 - Consider an electron that is 1010 m from an alpha...Ch. 5 - Each the balls shown below carries a charge q and...Ch. 5 - What is the electric field at a point where the...Ch. 5 - A proton is suspended in the air by an electric...Ch. 5 - The electric field in a particular thundercloud is...Ch. 5 - A small piece of cork whose mass is 2.0 g is given...Ch. 5 - If the electric field is 100 N/C at a distance of...Ch. 5 - What is the electric field of a proton at the...Ch. 5 - (a) What is the electric field of an oxygen...Ch. 5 - Two point charges, q1=2.0107C and q2=6.0108C , are...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Can you arrange the two point charges q1=2.0106C...Ch. 5 - Point charges q1=q2=4.0106C are fixed on the...Ch. 5 - A thin conducting plate 1.0 m on the side is given...Ch. 5 - Calculate the magnitude and direction of the...Ch. 5 - Two thin conducting plates, each 25.0 cm on a...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on thin semicircular...Ch. 5 - Two thin parallel conducting plates are placed 2.0...Ch. 5 - A thin conducing plate 2.0 m on a side is given a...Ch. 5 - A total charge q is distributed uniformly along a...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - A rod bent into the arc of a circle subtends an...Ch. 5 - A pluton moves in the electric field E=200iN/C ....Ch. 5 - An electron and a proton, each starting from rest,...Ch. 5 - A spherical water droplet of radius 25 m carries...Ch. 5 - A proton enters the uniform electric field...Ch. 5 - Shown below is a small sphere of mass 0.25 g that...Ch. 5 - Two infinite rods, each carrying a uniform charge...Ch. 5 - Positive charge is distributed with a uniform...Ch. 5 - From a distance of 10 cm, a proton is projected...Ch. 5 - A particle of mass m and charge q moves along a...Ch. 5 - Which of the following electric field lines are...Ch. 5 - In this exercise, you practice electric field...Ch. 5 - Draw the electric field for a system of three...Ch. 5 - Two charges of equal magnitude but opposite sign...Ch. 5 - Suppose the electric field of an isolated point...Ch. 5 - Consider the equal and opposite charges shown...Ch. 5 - (a) What is the dipole moment of the configuration...Ch. 5 - A water molecule consists of two hydrogen atoms...Ch. 5 - Point charges q1=2.0C and q1=4.0C are located at...Ch. 5 - What is the force on the 5.0C charge shown below?Ch. 5 - What is the force on the charge placed at the 2.0C...Ch. 5 - Four charged particles are positioned at the...Ch. 5 - A charge Q is fixed at the origin and a second...Ch. 5 - A charge q=2.0C is released from rest when it is...Ch. 5 - What is the electric field at the midpoint M of...Ch. 5 - Find the electric field at P for the charge...Ch. 5 - (a) What is the electric field at the...Ch. 5 - Point charges are placed at the four corner of a...Ch. 5 - Three charges are positioned at the cornets of a...Ch. 5 - Prob. 119APCh. 5 - A particle of charge q and mass m is placed at the...Ch. 5 - Charge is distributed uniformly along the entire...Ch. 5 - The circular are shown below carries a charge per...Ch. 5 - Calculate the electric field due to a uniformly...Ch. 5 - The charge unit length on the thin shown below is ...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on the thin...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A simple rearrangement of Newtons second law givesFnet=ma. Show that a net force of 84Nis needed to give a 12kg...
Conceptual Integrated Science
23.3 Energy of the Nucleus. How much work is needed to assemble an atomic nucleus containing three protons (suc...
University Physics (14th Edition)
(a) Show that .
[Hint: Use integration by parts.]
(b) Let be the step function: . (1.95)
Show that .
Introduction to Electrodynamics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Determine the nuclear mass of nickel-60, given that its binding energy is very nearly 8.8 MeV/nucleon.
Essential University Physics: Volume 2 (3rd Edition)
39. What is the sound intensity of a whisper at a distance of 2.0 m, in W/m2? What is the corresponding sound i...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forwardA point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forwardIs it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forward
- A circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardA very small ball has a mass of 5.00 103 kg and a charge of 4.00 C. What magnitude electric field directed upward will balance the weight of the ball so that the ball is suspended motionless above the ground? (a) 8.21 102 N/C (b) 1.22 104 N/C (c) 2.00 102 N/C (d) 5.11 106 N/C (e) 3.72 103 N/Carrow_forwardWhy is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forward
- An electric field with a magnitude of 6.0 x 104 N/C is directed parallel to the positive y axis. A particle with a charge q = 4.8 C is moving along the x axis with a speed v 3.0 x 10 m/s. The force on the charge is approximately 19 х 10° O 8.6 x 10 N perpendicular to the xy plane. O 2.9 x 10 14 N in the y direction. O 8.6 x10-8 N in the x direction. zero. O 2.9 x 10-14N in the x direction.arrow_forwardA particle of mass 1.00 x 10-9 kg and charge 3.00 pC is moving in a vacuum chamber where the electric field has magnitude 2.00 x 103 N/C and is directed straight upward. Neglecting other forces except gravity, calculate the particle’s (a) acceleration and (b) velocity after 2.00 s if it has an initial velocity of 5.00 m/s in the downward direction.arrow_forwardA proton enters a region of uniform electric field of magnitude 79.2 N/C with an initial velocity of 19.5 km/s directed perpendicularly to the electric field. What is the speed of the proton 1.94 μs after entering this region?arrow_forward
- A very long, straight wire has charge per unit length 3.20 * 10-10 C/m. At what distance from the wire is the electric-field magnitude equal to 2.50 N/C?arrow_forwardThe electric field in a region is uniform (not changing over distance) with a magnitude of 1.62 x10^3 N/C and it points in the +x direction. What is the magnitude of the voltage difference between two points separated on the x‐axis by a distance of 2.50 mm?arrow_forwardThe velocity of a particle (m = 10 mg, q = - 4.0 µC) at t = 0 is 20 m/s in the positive x-direction. If the particle moves in a uniform electric field of 20 N/C in the positive x-direction, what is the particle's velocity ( in m/s) at t = 16.3 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY