University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 103P
Two charges of equal magnitude but opposite sign make up an electric dipole. A quadrupole consists of two electric dipoles are placed anti-parallel at two edges of a square as shown.
Draw the electric field of the charge distribution.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The figure provided shows a metal sphere hanging by an insulating thread within a hollow conducting sphere. A conducting wire extends from the metal sphere through a small hole in the hollow sphere, but without making contact with the metal sphere. A charged rod is then used to transfer positive charge to the protruding wire. After the charged rod has touched the wire and been removed, what is the charge of the surface of the small metal sphere?
Neutral Negative Positive
The diagram below shows two point charges, A & B. The charge of A is -6 nC & the charge of B is -3.2 nC. Determine the magnitude &
direction of the net E-field at point P. The distance between A & P is 0.24 m & the distance between B & P is 0.61 m.
P
B
Part B: Location of zero E-field
x
P
Two point charges, A & B (qA = -22 μC & qв = 50 μC), are separated by 14 cm. The electric field at point P (see below) is zero. How far from
A is P?
9.3 cm
? 14 cm
936.46 N/C
Enet =
direction of Enet =
quadrant 3
8
939.65
X relative to the VERTICAL in
A plastic ball and glass marble are given uniformly distributed surface charges of -2 nC and +2 nC, respectively, and their centers are separated by 1 centimeter along a line we can call the x axis. What is the magnitude of the force that a rubber ball with a uniformly distributed surface charge of -5.6 nC experiences at a point on the x axis at a distance of 10 centimeters from the dipole's center?
(Hint: The shell theorem allows us to model all these charged spheres as if they were point particles)
Chapter 5 Solutions
University Physics Volume 2
Ch. 5 - Check Your Understanding What would be different...Ch. 5 - Check Your Understanding What would be different...Ch. 5 - Check Your Understanding What is the electric...Ch. 5 - Check Your Understanding How would the strategy...Ch. 5 - Check Your Understanding How would the above limit...Ch. 5 - Check Your Understanding the electric field 100k...Ch. 5 - There are very large numbers of charged particles...Ch. 5 - Why do most objects tend to contain nearly equal...Ch. 5 - A positively charged It'd attracts a small piece...Ch. 5 - Two bodies attract each other electrically. Do...
Ch. 5 - How would you determine whether the charge on a...Ch. 5 - An eccentlic inventor attempts to levitate a cork...Ch. 5 - When a glass rod is lubbed with silk, it becomes...Ch. 5 - Why does a car always attract dust right after it...Ch. 5 - Does the uncharged conductor shown below...Ch. 5 - While walking on a mg, a person frequently becomes...Ch. 5 - Compare charging by conduction to charging by...Ch. 5 - Small pieces of tissue are attracted to a charged...Ch. 5 - Trucks that cany gasoline often have chains...Ch. 5 - Why do electrostatic experiments work so poorly in...Ch. 5 - Why do some clothes cling together after being...Ch. 5 - Can induction be used to produce charge on an...Ch. 5 - Suppose someone tells you that rubbing quartz with...Ch. 5 - A handheld copper rod does not acquire a charge...Ch. 5 - Suppose you place a charge q near a large metal...Ch. 5 - Would defining the charge on an electron to be...Ch. 5 - An atomic nucleus contains positively charged...Ch. 5 - Is the fore between two fixed charges influenced...Ch. 5 - When measuring an electlic field, could we use a...Ch. 5 - During fair weather, the electric field due to the...Ch. 5 - If the electric field at a point on the line...Ch. 5 - Two charges lie along the x-axis. Is it nue that...Ch. 5 - Give a plausible argument as to why the electric...Ch. 5 - Compare the electric fields of an infinite sheet...Ch. 5 - Describe the electric fields of an infinite...Ch. 5 - A negative charge is placed at center of a ring of...Ch. 5 - If a point charge is released fmm rest in a...Ch. 5 - Under what conditions, if any, will the trajectory...Ch. 5 - How would you experimentally distinguish an...Ch. 5 - A representation of an electric field shows 10...Ch. 5 - What is the ratio of the number of electlic field...Ch. 5 - What are the stable orientation(s) for a dipole in...Ch. 5 - Common static electricity involves charges ranging...Ch. 5 - If 1.801020 electrons move through a pocket...Ch. 5 - To stat a car engine, the car battery moves...Ch. 5 - A certain lightning bolt moves 40.0 C of charge....Ch. 5 - A 2.5-g copper penny is given a charge of 2.0109C...Ch. 5 - A 2.5-g copper penny is given a charge of 4.0109C...Ch. 5 - Suppose a speck of dust in an electrostatic...Ch. 5 - An amoeba has 1.001016 protons and a net charge of...Ch. 5 - A 50.0-g ball of copper has a net charge of 2.00C....Ch. 5 - What net charge would you place on a 100-g piece...Ch. 5 - How many coulombs of positive charge are there in...Ch. 5 - Two point particles with charges +3C and +5C are...Ch. 5 - Two charges +3C and +12C are fixed 1 m apart, with...Ch. 5 - In a salt crystal, the distance between adjacent...Ch. 5 - Protons in an atomic nucleus ale typically 1015 m...Ch. 5 - Suppose Earth and the Moon each carried a net...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Where must q3 of the preceding problem be placed...Ch. 5 - Two small balls, each of mass 5.0 g, are attached...Ch. 5 - Point charges q1=2.0C and q3=4.0C arelocated at...Ch. 5 - The net excess charge on two small spheres (small...Ch. 5 - Two small, identical conducting spheres repel each...Ch. 5 - A charge q=2.0C is placed at the point P shown...Ch. 5 - What is the net electric fore on the charge...Ch. 5 - Two fixed particles, each of charge 5.0106C , are...Ch. 5 - The charges q1=2.0107C, q2=4.0107C, and q3=1.0107C...Ch. 5 - What is the force on the charge q at the...Ch. 5 - Point charges q1=10C and q2=30C are fixed at...Ch. 5 - A particle of charge 2.0108C experiences an upward...Ch. 5 - On a typical clear day, the atmospheric electric...Ch. 5 - Consider an electron that is 1010 m from an alpha...Ch. 5 - Each the balls shown below carries a charge q and...Ch. 5 - What is the electric field at a point where the...Ch. 5 - A proton is suspended in the air by an electric...Ch. 5 - The electric field in a particular thundercloud is...Ch. 5 - A small piece of cork whose mass is 2.0 g is given...Ch. 5 - If the electric field is 100 N/C at a distance of...Ch. 5 - What is the electric field of a proton at the...Ch. 5 - (a) What is the electric field of an oxygen...Ch. 5 - Two point charges, q1=2.0107C and q2=6.0108C , are...Ch. 5 - Point charges q1=50C and q2=25C are placed 1.0 m...Ch. 5 - Can you arrange the two point charges q1=2.0106C...Ch. 5 - Point charges q1=q2=4.0106C are fixed on the...Ch. 5 - A thin conducting plate 1.0 m on the side is given...Ch. 5 - Calculate the magnitude and direction of the...Ch. 5 - Two thin conducting plates, each 25.0 cm on a...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on thin semicircular...Ch. 5 - Two thin parallel conducting plates are placed 2.0...Ch. 5 - A thin conducing plate 2.0 m on a side is given a...Ch. 5 - A total charge q is distributed uniformly along a...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - Charge is distributed along the entire x-axis...Ch. 5 - A rod bent into the arc of a circle subtends an...Ch. 5 - A pluton moves in the electric field E=200iN/C ....Ch. 5 - An electron and a proton, each starting from rest,...Ch. 5 - A spherical water droplet of radius 25 m carries...Ch. 5 - A proton enters the uniform electric field...Ch. 5 - Shown below is a small sphere of mass 0.25 g that...Ch. 5 - Two infinite rods, each carrying a uniform charge...Ch. 5 - Positive charge is distributed with a uniform...Ch. 5 - From a distance of 10 cm, a proton is projected...Ch. 5 - A particle of mass m and charge q moves along a...Ch. 5 - Which of the following electric field lines are...Ch. 5 - In this exercise, you practice electric field...Ch. 5 - Draw the electric field for a system of three...Ch. 5 - Two charges of equal magnitude but opposite sign...Ch. 5 - Suppose the electric field of an isolated point...Ch. 5 - Consider the equal and opposite charges shown...Ch. 5 - (a) What is the dipole moment of the configuration...Ch. 5 - A water molecule consists of two hydrogen atoms...Ch. 5 - Point charges q1=2.0C and q1=4.0C are located at...Ch. 5 - What is the force on the 5.0C charge shown below?Ch. 5 - What is the force on the charge placed at the 2.0C...Ch. 5 - Four charged particles are positioned at the...Ch. 5 - A charge Q is fixed at the origin and a second...Ch. 5 - A charge q=2.0C is released from rest when it is...Ch. 5 - What is the electric field at the midpoint M of...Ch. 5 - Find the electric field at P for the charge...Ch. 5 - (a) What is the electric field at the...Ch. 5 - Point charges are placed at the four corner of a...Ch. 5 - Three charges are positioned at the cornets of a...Ch. 5 - Prob. 119APCh. 5 - A particle of charge q and mass m is placed at the...Ch. 5 - Charge is distributed uniformly along the entire...Ch. 5 - The circular are shown below carries a charge per...Ch. 5 - Calculate the electric field due to a uniformly...Ch. 5 - The charge unit length on the thin shown below is ...Ch. 5 - The charge per unit length on the thin rod shown...Ch. 5 - The charge per unit length on the thin...
Additional Science Textbook Solutions
Find more solutions based on key concepts
You put a variable resistance across a battery that maintains a fixed voltage across its terminals. If you lowe...
Essential University Physics (3rd Edition)
Choose the best answer to each of the following Explain your reasoning. 3.The modern organism that appeared to ...
The Cosmic Perspective Fundamentals (2nd Edition)
25. BIO Base pairing in DNA, II. Refer to the previous problem. Figure 17.47 shows the bonding of the cytosine ...
College Physics (10th Edition)
Which of the three orbits shown below (A, B, or C) would you say most closely matches the shape of Earth's orbi...
Lecture- Tutorials for Introductory Astronomy
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P 19.21. The rod has a total charge of 7.50 C. Find (a) the magnitude and (b) the direction of the electric field at O, the center of the semicircle.arrow_forwardTwo small beads having positive charges q1 = 3q and q2 = q are fixed at the opposite ends of a horizontal insulating rod of length d = 1.50 m. The bead with charge q1 is at the origin. As shown in Figure P19.7, a third small, charged bead is free to slide on the rod. (a) At what position x is the third bead in equilibrium? (b) Can the equilibrium be stable?arrow_forwardA circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forward
- A particle with charge q on the negative x axis and a second particle with charge 2q on the positive x axis are each a distance d from the origin. Where should a third particle with charge 3q be placed so that the magnitude of the electric field at the origin is zero?arrow_forwardTwo small spherical conductors are suspended from light-weight vertical insulating threads. The conductors are brought into contact (Fig. P23.50, left) and released. Afterward, the conductors and threads stand apart as shown at right. a. What can you say about the charge of each sphere? b. Use the data given in Figure P23.50 to find the tension in each thread. c. Find the magnitude of the charge on each sphere. Figure P23.50arrow_forwardA particle with charge 3.00 nC is at the origin, and a particle with negative charge of magnitude Q is at x = 50.0 cm. A third particle with a positive charge is in equilibrium at x = 20.9 cm. What is Q?arrow_forward
- Initially a glass rod and a piece of silk are neutral. After you rub the silk against the rod, the glass rod has a surplus of 3.33 1011 protons. What is the charge q of the silk?arrow_forwardThree equal positive charges q are at the comers of an equilateral triangle of side a as shown in Figure P19.28. Assume the three charges together create an electric field. (a) Sketch the field lines in the plane of the charges. (b) Find the location of one point (other than ) where the electric field is zero. What are (c) the magnitude and (d) the direction of the electric field at P due to the two charges at the base?arrow_forwardA test charge of +3 C is at a point P where an external electric field is directed to the right and has a magnitude of 4 06 N/C. If the test charge is replaced with another charge of 3 C, what happens to the external electric field at P? (a) It is unaffected. (b) It reverses direction. (c) It changes in a way that cannot be determined.arrow_forward
- Figure 24.10 shows a source that consists of two charged particles. a. What is the sign of the charge on each particle? b. In which region (A, B, or C) is the electric field the weakest? c. In which region (A, B, or C) is the electric field the strongest? FIGURE 24.10arrow_forwardThe fundamental charge is e = 1.60 1019 C. Identify whether each of the following statements is true or false. (a) Its possible to transfer electric charge to an object so that its net electric charge is 7.5 times the fundamental electric charge, e. (b) All protons have a charge of +e. (c) Electrons in a conductor have a charge of e while electrons in an insulator have no charge.arrow_forwardTwo large neutral metal plates, fitted tightly against each other, are placed between two particles with charges of equal magnitude but opposite sign, such that the plates are perpendicular to the line connecting the charges (Fig. P24.10). What will happen to each plate when they are released and allowed to move freely? Draw the electric field lines for the particles-plates system. FIGURE P24.10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY