College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 41PE
Integrated Concepts:
(a) What temperature gas would have atoms moving fast enough to bring two 3He nuclei into contact? Note that, because both are moving, the average kinetic energy only needs to be half the electric potential energy of these doubly charged nuclei when just in contact with one another.
(b) Does this high temperature imply practical difficulties for doing this in controlled fusion?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 32 Solutions
College Physics
Ch. 32 - In terms of radiation dose, what is the major...Ch. 32 - One of the methods used to limit radiation dose to...Ch. 32 - Isotopes that emit (radiation are relatively safe...Ch. 32 - Why is radon more closely associated with inducing...Ch. 32 - The RBE for lowenergy s is 1.7, whereas that for...Ch. 32 - Which methods of radiation protection were used in...Ch. 32 - What radioisotope could be a problem in homes...Ch. 32 - Are some types of cancer more sensitive to...Ch. 32 - Suppose a person swallows some radioactive...Ch. 32 - Radiotherapy is more likely to be used to treat...
Ch. 32 - Does loud irradiation leave the food radioactive?...Ch. 32 - Compare a low dose of radiation to a human with a...Ch. 32 - Suppose one load irradiation plant uses a 137Cs...Ch. 32 - Why does the fusion of light nuclei into heavier...Ch. 32 - Energy input is required to fuse medium-mass...Ch. 32 - In considering potential fusion reactions, what is...Ch. 32 - Give reasons justifying the contention made in the...Ch. 32 - Explain why the fission of heavy nuclei releases...Ch. 32 - Explain, in terms of conservation of momentum and...Ch. 32 - The ruins of the Chernobyl reactor are enclosed in...Ch. 32 - Since the uranium or plutonium nucleus fissions...Ch. 32 - The cure of a nuclear reactor generates a large...Ch. 32 - How can a nuclear reactor contain many critical...Ch. 32 - Why can heavy nuclei with odd numbers of neutrons...Ch. 32 - Why is a conventional fission nuclear reactor not...Ch. 32 - What are some of the reasons that plutonium rather...Ch. 32 - Use the laws of conservation of momentum and...Ch. 32 - How does the lithium deuteride in the...Ch. 32 - Fallout from nuclear weapons tests in the...Ch. 32 - A neutron generator uses an (source, such as...Ch. 32 - Neutrons from a source (perhaps the one discussed...Ch. 32 - The purpose of producing 99Mo (usually by neutron...Ch. 32 - (a) Two annihilation rays in a PET scan originate...Ch. 32 - Table 32.1 indicates that 7.50 mCi of 99mTc is...Ch. 32 - The activities of 131I and 123I used in thyroid...Ch. 32 - (a) Neutron activation of sodium, which is 100%...Ch. 32 - What is the dose in mSv for: (a) a 0.1 Gy xray?...Ch. 32 - Find the radiation dose in Gy for: (a) A 10mSv...Ch. 32 - How many Gy of exposure is needed to give a...Ch. 32 - What is the dose in Sv in a cancer treatment that...Ch. 32 - One half the rays from 99mTc are absorbed by a...Ch. 32 - A plumber at a nuclear power plant receives a...Ch. 32 - In the 1980s, the term picowave was used to...Ch. 32 - Find the mass of 239Pu mat has an activity of 1.00...Ch. 32 - A beam of 168MeV nitrogen nuclei is used for...Ch. 32 - (a) If the average molecular mass of compounds in...Ch. 32 - Calculate the dose in Sv to the chest at a patient...Ch. 32 - (a) A cancer patient is exposed to rays from a...Ch. 32 - What is the mass of 60Co in a cancer therapy...Ch. 32 - Large amounts of 65Zn are produced in copper...Ch. 32 - Naturally occurring 40K is listed as responsible...Ch. 32 - (a) Background radiation due to 226Ra averages...Ch. 32 - The annual radiation dose from 14C in our bodies...Ch. 32 - If everyone in Australia received an extra 0.05...Ch. 32 - Verify that the total number at nucleons, total...Ch. 32 - Calculate the energy output in each of the fusion...Ch. 32 - Show that the total energy released in the...Ch. 32 - Verify by listing the number of nucleons, total...Ch. 32 - The energy produced by the fusion of a 1.00—kg...Ch. 32 - Tritium is naturally rare, but can be produced by...Ch. 32 - Two fusion reactions mentioned in the text are...Ch. 32 - (a) Calculate the number of grams of deuterium in...Ch. 32 - How many kilograms of water are needed to obtain...Ch. 32 - The power output of the Sun is 41026W. (a) If 90%...Ch. 32 - Another set of reactions that result in the fusing...Ch. 32 - (a) Find the total energy released in MeV in each...Ch. 32 - Verify that the total number of nucleons, total...Ch. 32 - Integrated Concepts The laser system tested for...Ch. 32 - Integrated Concepts Find the amount of energy...Ch. 32 - Integrated Concepts: (a) What temperature gas...Ch. 32 - Integrated Concepts (a) Estimate the years 1hat1he...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - Confirm that each at the reactions listed for...Ch. 32 - Breeding plutonium produces energy even before any...Ch. 32 - The naturally occurring radioactive isotope 232Th...Ch. 32 - The electrical power output of a large nuclear...Ch. 32 - A large power reactor that has been in operation...Ch. 32 - Find the mass converted into energy by a 12.0kT...Ch. 32 - What mass is converted into energy by a 1.00MT...Ch. 32 - Fusion bombs use neutrons from their fission...Ch. 32 - It is estimated that the total explosive yield of...Ch. 32 - A radiationenhanced nuclear weapon (or neutron...Ch. 32 - (a) How many 239Pu nuclei must fission to produce...Ch. 32 - Assume onefourth of the yield of a typical 320kT...Ch. 32 - This problem gives some idea of the magnitude of...Ch. 32 - It is estimated that weapons tests in the...Ch. 32 - A 1.00MT bomb exploded a few kilometers above the...Ch. 32 - Integrated Concepts One scheme to put nuclear...
Additional Science Textbook Solutions
Find more solutions based on key concepts
11. If you put your hand into boiling water at 212°F, you will immediately get a serious bum. Yet you readily r...
College Physics (10th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (4th Edition)
24. The 1.0 kg block in FIGURE EX7.24 is tied to the wall with a rope. It sits on top of the 2.0 kg block. The ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Compare the brightness of the bulbs in this circuit. 1. What can you conclude from your observation about the a...
Tutorials in Introductory Physics
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardThe purpose of producing 99Mo (usually by neutron activation of natural molybdenum, as in the preceding problem) is to produce 99mTc. Using the rules, verily that the decay of 99Mo produces 99mTc. (Most 99mTc nuclei produced in this decay are left in a metastable excited state denoted 99mTc.)arrow_forward(a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forward
- It is estimated that the total explosive yield of all the nuclear bombs in existence currently is about 4.000 MT. (a) Convert this amount of energy to kilowatthours, noting that 1kWh=3.60106J. (b) What would the monetary value of this energy be if it could be converted to electricity costing 10 cents per kW.h?arrow_forward(a) Calculate BE/A for 235U, the rarer of the two most common uranium isotopes. (b) Calculate BE/A for 238U. (Most of uranium is 238U.) Note that 238U has even numbers at both protons and neutrons. Is the BE/A of 238U significantly different from that of 235U?arrow_forwardIf two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within R1014mof one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse. (a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)arrow_forward
- Why is a conventional fission nuclear reactor not able to explode as a bomb?arrow_forwardA radiationenhanced nuclear weapon (or neutron bomb) can have a smaller total yield and still produce more prompt radiation than a conventional nuclear bomb. This allows the use of neutron bombs to kill nearby advancing enemy forces with radiation without blowing up your own forces with the blast. For a 0.500kT radiationenhanced weapon and a 1.00kT conventional nuclear bomb: (a) Compare the blast yields. (b) Compare the prompt radiation yields.arrow_forwardAssume onefourth of the yield of a typical 320kT strategic bomb comes from fission reactions averaging 200 MeV and the remainder from fusion reactions averaging 20 MeV. (a) Calculate the number of fissions and the approximate mass of uranium and plutonium fissioned, taking the average atomic mass to be 238. (b) Find the number of fusions and calculate the approximate mass of fusion fuel, assuming an average total atomic mass of the two nuclei in each reaction to be 5. (c) Considering the masses found, does it seem reasonable that some missiles could carry 10 warheads? Discuss, noting that the nuclear fuel is only a part of the mass of a warhead.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning