Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.4P

Consider a low-speed open-circuit subsonic wind tunnel with an inlet-to-throat area ratio of 12. The tunnel is turned on. and the pressure difference between the inlet (the settling chamber) and the test section is read as a height difference of 10 cm on a U-tube mercury manometer. (The density of liquid mercury is 1.36 × 10 4 kg/m 3 .) Calculate the velocity of the air in the test section.

Blurred answer
Students have asked these similar questions
Consider a low-speed subsonic wind tunnel with a 12/1 contraction area ratio for the nozzle. If the flow in the test section is at a standard sea level conditions with a velocity of 50 m/s, calculate the height difference in a U-tube mercury manometer with one side connected to the nozzle inlet and the other to the test section. pHg = 13.6 x 103 kg/m3.
An airplane is flying at a standard altitude of 10,000 ft. A Pitot tube mounted at the nose measures a pressure of 2220 lb/ft2. The airplane is flying at a high subsonic speed, faster than 300 mph. The flow should be considered compressible. Calculate the velocity of the airplane.
Good day. Here is my question (10) Consider a low-speed subsonic wind tunnel with a 12/1 contraction area ratio for the nozzle. If the flow in the test section is at a standard sea level conditions with a velocity of 50 m /s, calculate the height difference in a U-tube mercury manometer with one side connected to the nozzle inlet and the other to the test section. ρHg = 13.6 x 103 kg/ m^3.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About TRANSVERSE SHEAR in 10 Minutes!! - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=4x0E9yvzfCM;License: Standard Youtube License