Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.16P

Consider the nonlifting flow over a circular cylinder of a given radius, where V = 20 ft/s . If V is doubled, that is, V = 40 ft/s , does the shape of the streamlines change? Explain.

Blurred answer
Students have asked these similar questions
(a) A wing section with a chord of c and a span of b is mounted at zero angle of attack in a wind tunnel. A pitot probe is used to measure the velocity profile in the viscous region downstream of the wing section as shown in the figure. The measured velocity profile is u(z) = U∞ - (U/2) cos[TZ/(2w)] for -w ≤ z ≤w. Here, w = 0.02c. Assuming a constant pressure p = po along the streamlines (dashed lines in the figure) and across the wake where the velocity was measured, calculate the friction drag coefficient Cp, of the wing section. U Streamlines u = U_ -- cos 22 2W² +w Viscous wake = -W (b) Consider a thin flat plate at zero angle of attack in an airflow at P∞ = 1.225 kg/m³, T∞ = 288 K and μ∞ 1.7894 x 10-5 kg/m/s. The length of the plate is 2 m and the span is 0.5 m. Assume the boundary layers on the plate are laminar throughout (on the upper and lower surfaces both) where LBL(x)/x = 0.664/√√/Rex applies. The freestream velocity is 100 m/s. Calculate the friction drag (Df) of the first…
The two-dimensional incompressible flow-field around a Rankine vortex of strength r and core size R, has only a circumferential component, v. The value of v is given as follows: R г v(r) Tr r R 2r Determine the vorticity of this flow-field and the pressure coefficient, Cp, and plot them as a function of r/R. The non-dimensional pressure coefficient C, is defined below. Where is the pressure expected to be minimum, and what is the value of the minimum C,? (Use polar coordinates) p - Poo Cp where p. is the pressure at infinity, and p is the density of the fluid. VR is the flow velocity at the outer edge of the vortex core (i.e. at r= R)
The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression V = -2(x – y) where the stream function has the units of ft²/s with x and y in feet. (a) Calculate velocity components u and v. (b) Verify that the velocity field is irrotational. (c) Generate an expression for the Potential function in this region.

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License