3. For two plates 1 and 2 a riveted system is suggested to connect them. Where e thickness of plate. 1 is 12 mm and plate. 2 is 10 mm. The yield stress and odulus of Elasticity for plate,1 is 300 MPa, and 200 GPa respectively, while for ate, 2 is 400 MPa and 210 GPa respectively. Assume the tensile stress is equal to e compressive stress for both plates. Calculate the efficiency of riveting system.

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter8: Applications Of Plane Stress (pressure Vessels, Beams, And Combined Loadings)
Section: Chapter Questions
Problem 8.2.12P: Solve the preceding problem if the diameter is 480 mm, the pressure is 20 MPa, the yield stress in...
icon
Related questions
Question
Q3. For two plates 1 and 2 a riveted system is suggested to connect them. Where
the thickness of plate. 1 is 12 mm and plate. 2 is 10 mm. The yield stress and
modulus of Elasticity for plate,1 is 300 MPa, and 200 GPa respectively, while for
plate, 2 is 400 MPa and 210 GPa respectively. Assume the tensile stress is equal to
the compressive stress for both plates. Calculate the efficiency of riveting system.
M
C
Figure 1
Figure 2
Transcribed Image Text:Q3. For two plates 1 and 2 a riveted system is suggested to connect them. Where the thickness of plate. 1 is 12 mm and plate. 2 is 10 mm. The yield stress and modulus of Elasticity for plate,1 is 300 MPa, and 200 GPa respectively, while for plate, 2 is 400 MPa and 210 GPa respectively. Assume the tensile stress is equal to the compressive stress for both plates. Calculate the efficiency of riveting system. M C Figure 1 Figure 2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Design of Permanent Joints
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning