Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.8, Problem 19MP
Find Lagrange’s equations in polar coordinates for a particle moving in a plane if the potential energy is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sodium ion (Na+) moves in the xy-plane with a speed of 2.90 ✕ 103 m/s. If a constant magnetic field is directed along the z-axis with a magnitude of 3.25 ✕ 10−5 T, find the magnitude of the magnetic force acting on the ion and the magnitude of the ion's acceleration.
HINT
(a)
the magnitude (in N) of the magnetic force acting on the ion
N
(b)
the magnitude (in m/s2) of the ion's acceleration
m/s2
A particle started at A(1,0) circled the origin once an
d returned toA(1,0) .what were the change in its coordinates
show complete solution (computation and final answer must be in 4 decimal places)
Chapter 9 Solutions
Mathematical Methods in the Physical Sciences
Ch. 9.1 - The speed of light in a medium of index of...Ch. 9.1 - The speed of light in a medium of index of...Ch. 9.1 - The speed of light in a medium of index of...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...
Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.2 - Write and solve the Euler equations to make the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Change the independent variable to simplify the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Write and solve the Euler equations to make the...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Use Fermats principle to find the path followed by...Ch. 9.3 - Find the geodesics on a plane using polar...Ch. 9.3 - Prob. 16PCh. 9.3 - Find the geodesics on the cone x2+y2=z2. Hint: Use...Ch. 9.3 - Find the geodesics on a sphere. Hints: Use...Ch. 9.4 - Verify equations (4.2).Ch. 9.4 - Show, in Figure 4.4, that for a point like...Ch. 9.4 - In the brachistochrone problem, show that if the...Ch. 9.4 - Consider a rapid transit system consisting of...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.4 - In Problems 5 to 7, use Fermats principle to find...Ch. 9.5 - (a) Consider the case of two dependent variables....Ch. 9.5 - Set up Lagranges equations in cylindrical...Ch. 9.5 - Do Problem 2 in spherical coordinates.Ch. 9.5 - Use Lagranges equations to find the equation of...Ch. 9.5 - Find the equation of motion of a particle moving...Ch. 9.5 - A particle moves on the surface of a sphere of...Ch. 9.5 - Prove that a particle constrained to stay on a...Ch. 9.5 - Two particles each of mass m are connected by an...Ch. 9.5 - A mass m moves without friction on the surface of...Ch. 9.5 - Do Example 3 above, using cylindrical coordinates...Ch. 9.5 - A yo-yo (as shown) falls under gravity. Assume...Ch. 9.5 - Find the Lagrangian and Lagranges equations for a...Ch. 9.5 - A particle moves without friction under gravity on...Ch. 9.5 - 2A hoop of mass M and radius a rolls without...Ch. 9.5 - Generalize Problem 14 to any mass M of circular...Ch. 9.5 - Find the Lagrangian and the Lagrange equation for...Ch. 9.5 - A simple pendulum (Problem 4) is suspended from a...Ch. 9.5 - A hoop of mass m in a vertical plane rests on a...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.5 - For the following problems, use the Lagrangian to...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - In Problems 1 and 2, given the length l of a curve...Ch. 9.6 - Given 10 cc of lead, find how to form it into a...Ch. 9.6 - Prob. 4PCh. 9.6 - A curve y=y(x), joining two points x1 and x2 on...Ch. 9.6 - In Problem 5, given the volume, find the shape of...Ch. 9.6 - Integrate (6.2), simplify the result and integrate...Ch. 9.8 - (a) In Section 3, we showed how to obtain a first...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Find a first integral of the Euler equation to...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Write and solve the Euler equations to make...Ch. 9.8 - Find the geodesics on the cylinder r=1+cos.Ch. 9.8 - Prob. 9MPCh. 9.8 - Find the geodesics on the parabolic cylinder y=x2.Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - In Problems 11 to 18, use Fermats principle to...Ch. 9.8 - Find Lagranges equations in polar coordinates for...Ch. 9.8 - Repeat Problem 19 if V=K/r.Ch. 9.8 - Write Lagranges equations in cylindrical...Ch. 9.8 - In spherical coordinates, find the Lagrange...Ch. 9.8 - A particle slides without friction around a...Ch. 9.8 - Write and simplify the Euler equation to make...Ch. 9.8 - Prob. 25MPCh. 9.8 - A wire carrying a uniform distribution of positive...Ch. 9.8 - Find a first integral of the Euler equation for...Ch. 9.8 - Write the Lagrange equation for a particle moving...
Additional Math Textbook Solutions
Find more solutions based on key concepts
69. Get Started Early! Mitch and Bill are both age 75. When Mitch was 25 years old, he began depositing $1000 p...
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Give the limits of integration for evaluating the integral
as an iterated integral over the region D that is b...
University Calculus: Early Transcendentals (4th Edition)
In track, the second lane from the inside of the track is longer than the inside lane. Use this information to ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
CHECK POINT I You deposit $1000 in a saving account at a bank that has a rate of 4%. a. Find the amount, A, of ...
Thinking Mathematically (6th Edition)
1. Requirements A researcher collects a simple random sample of grade-point averages of statistics students, an...
Elementary Statistics (13th Edition)
Explain why or why not Determine whether the following statements are true and give an explanation or counterex...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Sketch a directional field for the given equation (identify isoclines) include the graph of potential solutions.arrow_forwardA particle is moving in the plane, so its coordinates ï and y are functions of ₺, and its polar coordinates r and ℗ also are functions of t. At a time when x = -4 and y = 3, and dx/dt = 2 and dy/dt = 1, what is de/dt?arrow_forward2. A simple pendulum has a particle of mass m at the end of a light rod of length 1. The other end of the rod is attached to a fixed point O, at the origin of polar coordinates (r, 0). The particle is at position (r,0) with 0 = 0 corresponding to the particle being vertically below 0. (a) Use the formulae for acceleration in polar coordinates, a = ( − rė²)ŕ+ (2ŕė +rë)ê (2) to show that T = mg cos 0+mlo², and Ö 0 = -²² sin 0, 3 where T is the tension in the rod. Use the relation (02) = 200 to deduce that j2 2g cos 0 + A, 1 where A is a constant. If the particle is instantaneously at rest (0 = 0) when the rod is horizontal, find and T when the rod is vertical. How does the tension in the vertical position (which is also the maximal tension) depend on the rod's length 1? (b) Assume the particle is subject to linear air resistance -av. Use the expression of the velocity in polar coordinates v =ŕŕ+rð (3) together with (2) to write the equations of motion in polar coordinates. Show that,…arrow_forward
- ii. Find parametric equations for the Line through (7, 5) and (-5, 7) 7. Calculate dy/dx at the point indicated: f(0) = (7tan 0, cos O), 0=a/4arrow_forwardA particle moves in space along a path whose parametric equations are given by x1 = b sin(wt), x2 = b cos(wt), x3 = c where b and c are constants. a. Find its position at vector 7, velocity v, and acceleration å at any time t. b. Show that the particle traverses its path with constant speed and that its distance from the origin remains constant. c. Show that the acceleration is perpendicular to the velocity and the x3-axis. d. Determine the trajectory of the particle, that is, the path described in terms of spatial coordinates only. Sketch the trajectory. 1.arrow_forwardSolvearrow_forward
- The position vector r describes the path of an object moving in the xy-plane. Position Vector Point r(t) = 2 cos ti + 2 sin tj (VZ, V2) (a) Find the velocity vector, speed, and acceleration vector of the object. v(t) = s(t) a(t) = (b) Evaluate the velocity vector and acceleration vector of the object at the given point. a(#) =arrow_forward(7) (D² - 70° + 180² - 2004 200+8) V = 0arrow_forward6arrow_forward
- Example: Sketch the direction field for the equation y' = y – t over the square -2 < t, y < 2, then using this direction field sketch the solution that passes through the points (-1,±1).arrow_forwardcos (0.48-j0.38) express in polar formarrow_forwardAn object that moves with constant velocity so that its position at time t is (x, v') = (1,5) +1 (L –4). a. Find its speed b. Find a pair of parametric equationsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Translations - Primary; Author: corbettmaths;https://www.youtube.com/watch?v=8Dtz5fBe7_Q;License: Standard YouTube License, CC-BY