Intermediate Algebra
5th Edition
ISBN: 9781259610233
Author: Julie Miller, Molly O'Neill, Nancy Hyde
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.1, Problem 24PE
To determine
Weather the given points
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Co Given
show that
Solution
Take home
Су-15
1994
+19
09/2
4
=a
log
суто
-
1092
ж
= a-1
2+1+8
AI | SHOT ON S4
INFINIX CAMERA
a
Question 7. If det d e f
ghi
V3
= 2. Find det
-1
2
Question 8. Let A = 1
4
5
0
3
2.
1 Find adj (A)
2 Find det (A)
3
Find A-1
2g 2h 2i
-e-f
-d
273
2a 2b 2c
Question 1. Solve the system
-
x1 x2 + 3x3 + 2x4
-x1 + x22x3 + x4
2x12x2+7x3+7x4
Question 2. Consider the system
= 1
=-2
= 1
3x1 - x2 + ax3
= 1
x1 + 3x2 + 2x3
x12x2+2x3
= -b
= 4
1 For what values of a, b will the system be inconsistent?
2 For what values of a, b will the system have only one solution?
For what values of a, b will the saystem have infinitely many solutions?
Chapter 9 Solutions
Intermediate Algebra
Ch. 9.1 - Prob. 1PECh. 9.1 - Prob. 2PECh. 9.1 - Prob. 3PECh. 9.1 - Prob. 4PECh. 9.1 - Prob. 5PECh. 9.1 - Prob. 6PECh. 9.1 - Prob. 7PECh. 9.1 - Prob. 8PECh. 9.1 - Prob. 9PECh. 9.1 - Prob. 10PE
Ch. 9.1 - Prob. 11PECh. 9.1 - Prob. 12PECh. 9.1 - Prob. 13PECh. 9.1 - Prob. 14PECh. 9.1 - Prob. 15PECh. 9.1 - Prob. 16PECh. 9.1 - Prob. 17PECh. 9.1 - Prob. 18PECh. 9.1 - Prob. 19PECh. 9.1 - Prob. 20PECh. 9.1 - Prob. 21PECh. 9.1 - Prob. 22PECh. 9.1 - Prob. 23PECh. 9.1 - Prob. 24PECh. 9.1 - Prob. 25PECh. 9.1 - Prob. 26PECh. 9.1 - Prob. 27PECh. 9.1 - Prob. 28PECh. 9.1 - Prob. 29PECh. 9.1 - Prob. 30PECh. 9.1 - Prob. 31PECh. 9.1 - Prob. 32PECh. 9.1 - Prob. 33PECh. 9.1 - Prob. 34PECh. 9.1 - Prob. 35PECh. 9.1 - Prob. 36PECh. 9.1 - Prob. 37PECh. 9.1 - Prob. 38PECh. 9.1 - Prob. 39PECh. 9.1 - Prob. 40PECh. 9.1 - Prob. 41PECh. 9.1 - Prob. 42PECh. 9.1 - Prob. 43PECh. 9.1 - Prob. 44PECh. 9.1 - Prob. 45PECh. 9.1 - Prob. 46PECh. 9.1 - Prob. 47PECh. 9.1 - Prob. 48PECh. 9.1 - Prob. 49PECh. 9.1 - Prob. 50PECh. 9.1 - Prob. 51PECh. 9.1 - Prob. 52PECh. 9.1 - Prob. 53PECh. 9.1 - Prob. 54PECh. 9.1 - Prob. 55PECh. 9.1 - Prob. 56PECh. 9.1 - Prob. 57PECh. 9.1 - Prob. 58PECh. 9.1 - Prob. 59PECh. 9.1 - Prob. 60PECh. 9.1 - Prob. 61PECh. 9.1 - Prob. 62PECh. 9.1 - Prob. 63PECh. 9.1 - Prob. 64PECh. 9.1 - Prob. 65PECh. 9.1 - Prob. 66PECh. 9.1 - Prob. 67PECh. 9.1 - Prob. 68PECh. 9.1 - Prob. 69PECh. 9.1 - Prob. 70PECh. 9.1 - Prob. 71PECh. 9.1 - Prob. 72PECh. 9.1 - Prob. 73PECh. 9.1 - Prob. 74PECh. 9.1 - Prob. 75PECh. 9.1 - Prob. 76PECh. 9.1 - Prob. 77PECh. 9.1 - Prob. 78PECh. 9.1 - Prob. 79PECh. 9.1 - Prob. 80PECh. 9.1 - Prob. 81PECh. 9.1 - Prob. 82PECh. 9.1 - Prob. 83PECh. 9.1 - Prob. 84PECh. 9.1 - Prob. 85PECh. 9.1 - Prob. 86PECh. 9.1 - Prob. 87PECh. 9.1 - Prob. 88PECh. 9.2 - Prob. 1PECh. 9.2 - Prob. 2PECh. 9.2 - Prob. 3PECh. 9.2 - Prob. 4PECh. 9.2 - Prob. 5PECh. 9.2 - Prob. 6PECh. 9.2 - Prob. 7PECh. 9.2 - Prob. 8PECh. 9.2 - Prob. 9PECh. 9.2 - Prob. 10PECh. 9.2 - Prob. 11PECh. 9.2 - Prob. 12PECh. 9.2 - For Exercises 9-16, use the equation of the...Ch. 9.2 - Prob. 14PECh. 9.2 - Prob. 15PECh. 9.2 - Prob. 16PECh. 9.2 - Prob. 17PECh. 9.2 - Prob. 18PECh. 9.2 - Prob. 19PECh. 9.2 - Prob. 20PECh. 9.2 - Prob. 21PECh. 9.2 - Prob. 22PECh. 9.2 - Prob. 23PECh. 9.2 - Prob. 24PECh. 9.2 - Prob. 25PECh. 9.2 - Prob. 26PECh. 9.2 - Prob. 27PECh. 9.2 - Prob. 28PECh. 9.2 - Prob. 29PECh. 9.2 - Prob. 30PECh. 9.2 - Prob. 31PECh. 9.2 - Prob. 32PECh. 9.2 - Prob. 33PECh. 9.2 - Prob. 34PECh. 9.2 - Prob. 35PECh. 9.2 - Prob. 36PECh. 9.2 - Prob. 37PECh. 9.2 - Prob. 38PECh. 9.2 - Prob. 39PECh. 9.2 - Prob. 40PECh. 9.2 - Prob. 41PECh. 9.2 - Prob. 42PECh. 9.2 - Prob. 43PECh. 9.2 - Prob. 44PECh. 9.2 - Prob. 45PECh. 9.2 - Prob. 46PECh. 9.2 - Prob. 47PECh. 9.2 - Prob. 48PECh. 9.2 - Prob. 49PECh. 9.3 - Prob. 1PECh. 9.3 - Prob. 2PECh. 9.3 - Prob. 3PECh. 9.3 - Prob. 4PECh. 9.3 - Prob. 5PECh. 9.3 - Prob. 6PECh. 9.3 - Prob. 7PECh. 9.3 - Prob. 8PECh. 9.3 - Prob. 9PECh. 9.3 - Prob. 10PECh. 9.3 - Prob. 11PECh. 9.3 - Prob. 12PECh. 9.3 - Prob. 13PECh. 9.3 - Prob. 14PECh. 9.3 - Prob. 15PECh. 9.3 - Prob. 16PECh. 9.3 - Prob. 17PECh. 9.3 - Prob. 18PECh. 9.3 - Prob. 19PECh. 9.3 - Prob. 20PECh. 9.3 - Prob. 21PECh. 9.3 - Prob. 22PECh. 9.3 - Prob. 23PECh. 9.3 - Prob. 24PECh. 9.3 - Prob. 25PECh. 9.3 - Prob. 26PECh. 9.3 - Prob. 27PECh. 9.3 - Prob. 28PECh. 9.3 - Prob. 29PECh. 9.3 - Prob. 30PECh. 9.3 - Prob. 31PECh. 9.3 - Prob. 32PECh. 9.3 - Prob. 33PECh. 9.3 - Prob. 34PECh. 9.3 - Prob. 35PECh. 9.3 - Prob. 36PECh. 9.3 - Prob. 37PECh. 9.3 - Prob. 38PECh. 9.3 - Prob. 39PECh. 9.3 - Prob. 40PECh. 9.3 - Prob. 41PECh. 9.3 - Prob. 42PECh. 9.3 - Prob. 43PECh. 9.3 - Prob. 44PECh. 9.3 - Prob. 45PECh. 9.3 - Prob. 46PECh. 9.3 - Prob. 47PECh. 9.3 - Prob. 48PECh. 9.3 - Prob. 49PECh. 9.3 - Prob. 50PECh. 9.3 - Prob. 51PECh. 9.3 - Prob. 52PECh. 9.3 - Prob. 53PECh. 9.3 - Prob. 54PECh. 9.3 - Prob. 55PECh. 9.3 - Prob. 56PECh. 9.3 - Prob. 57PECh. 9.3 - Prob. 58PECh. 9.3 - Prob. 1PRECh. 9.3 - Prob. 2PRECh. 9.3 - Prob. 3PRECh. 9.3 - Prob. 4PRECh. 9.3 - Prob. 5PRECh. 9.3 - Prob. 6PRECh. 9.3 - Prob. 7PRECh. 9.3 - Prob. 8PRECh. 9.3 - Prob. 9PRECh. 9.3 - Prob. 10PRECh. 9.3 - Prob. 11PRECh. 9.3 - Prob. 12PRECh. 9.3 - Prob. 13PRECh. 9.3 - Prob. 14PRECh. 9.3 - Prob. 15PRECh. 9.3 - Prob. 16PRECh. 9.3 - Prob. 17PRECh. 9.3 - Prob. 18PRECh. 9.3 - Prob. 19PRECh. 9.3 - Prob. 20PRECh. 9.3 - Prob. 21PRECh. 9.3 - Prob. 22PRECh. 9.3 - Prob. 23PRECh. 9.3 - Prob. 24PRECh. 9.3 - Prob. 25PRECh. 9.3 - Prob. 26PRECh. 9.3 - Prob. 27PRECh. 9.3 - Prob. 28PRECh. 9.3 - Prob. 29PRECh. 9.3 - Prob. 30PRECh. 9.4 - Prob. 1PECh. 9.4 - Prob. 2PECh. 9.4 - Prob. 3PECh. 9.4 - Prob. 4PECh. 9.4 - Prob. 5PECh. 9.4 - Prob. 6PECh. 9.4 - Prob. 7PECh. 9.4 - Prob. 8PECh. 9.4 - Prob. 9PECh. 9.4 - Prob. 10PECh. 9.4 - Prob. 11PECh. 9.4 - Prob. 12PECh. 9.4 - Prob. 13PECh. 9.4 - Prob. 14PECh. 9.4 - Prob. 15PECh. 9.4 - Prob. 16PECh. 9.4 - Prob. 17PECh. 9.4 - Prob. 18PECh. 9.4 - Prob. 19PECh. 9.4 - Prob. 20PECh. 9.4 - Prob. 21PECh. 9.4 - Prob. 22PECh. 9.4 - Prob. 23PECh. 9.4 - Prob. 24PECh. 9.4 - Prob. 25PECh. 9.4 - Prob. 26PECh. 9.4 - Prob. 27PECh. 9.4 - Prob. 28PECh. 9.4 - Prob. 29PECh. 9.4 - Prob. 30PECh. 9.4 - Prob. 31PECh. 9.4 - Prob. 32PECh. 9.4 - Prob. 33PECh. 9.4 - Prob. 34PECh. 9.4 - Prob. 35PECh. 9.4 - Prob. 36PECh. 9.4 - Prob. 37PECh. 9.4 - Prob. 38PECh. 9.4 - Prob. 39PECh. 9.4 - Prob. 40PECh. 9.4 - Prob. 41PECh. 9.4 - Prob. 42PECh. 9.4 - Prob. 43PECh. 9.4 - Prob. 44PECh. 9.4 - Prob. 45PECh. 9.4 - Prob. 46PECh. 9.4 - Prob. 47PECh. 9.4 - Prob. 48PECh. 9.4 - Prob. 49PECh. 9.4 - Prob. 50PECh. 9.4 - Prob. 51PECh. 9.4 - Prob. 52PECh. 9.4 - Prob. 53PECh. 9.4 - Prob. 54PECh. 9.4 - Prob. 55PECh. 9.4 - Prob. 56PECh. 9.4 - Prob. 57PECh. 9.4 - Prob. 58PECh. 9.5 - Prob. 1PECh. 9.5 - Prob. 2PECh. 9.5 - Prob. 3PECh. 9.5 - Prob. 4PECh. 9.5 - Prob. 5PECh. 9.5 - Prob. 6PECh. 9.5 - Prob. 7PECh. 9.5 - Prob. 8PECh. 9.5 - Prob. 9PECh. 9.5 - Prob. 10PECh. 9.5 - Prob. 11PECh. 9.5 - Prob. 12PECh. 9.5 - Prob. 13PECh. 9.5 - Prob. 14PECh. 9.5 - Prob. 15PECh. 9.5 - Prob. 16PECh. 9.5 - Prob. 17PECh. 9.5 - Prob. 18PECh. 9.5 - Prob. 19PECh. 9.5 - Prob. 20PECh. 9.5 - Prob. 21PECh. 9.5 - Prob. 22PECh. 9.5 - Prob. 23PECh. 9.5 - Prob. 24PECh. 9.5 - Prob. 25PECh. 9.5 - Prob. 26PECh. 9.5 - Prob. 27PECh. 9.5 - Prob. 28PECh. 9.5 - Prob. 29PECh. 9.5 - Prob. 30PECh. 9.5 - Prob. 31PECh. 9.5 - Prob. 32PECh. 9.5 - Prob. 33PECh. 9.5 - Prob. 34PECh. 9.5 - Prob. 35PECh. 9.5 - Prob. 36PECh. 9.5 - Prob. 37PECh. 9.5 - Prob. 38PECh. 9.5 - Prob. 39PECh. 9.5 - Prob. 40PECh. 9.5 - Prob. 41PECh. 9.5 - Prob. 42PECh. 9.5 - Prob. 43PECh. 9.5 - Prob. 44PECh. 9.5 - Prob. 45PECh. 9.5 - Prob. 46PECh. 9.5 - Prob. 47PECh. 9.5 - Prob. 48PECh. 9.5 - Prob. 49PECh. 9.5 - Prob. 50PECh. 9.5 - Prob. 51PECh. 9.5 - Prob. 52PECh. 9.5 - Prob. 53PECh. 9.5 - Prob. 54PECh. 9.5 - Prob. 55PECh. 9 - Prob. 1CRECh. 9 - Prob. 2CRECh. 9 - Prob. 3CRECh. 9 - Prob. 4CRECh. 9 - Prob. 5CRECh. 9 - Prob. 6CRECh. 9 - Prob. 7CRECh. 9 - Prob. 8CRECh. 9 - 9 Solve by using the Gauss-Jordan method.
Ch. 9 - Prob. 10CRECh. 9 - Prob. 11CRECh. 9 - Prob. 12CRECh. 9 - Prob. 13CRECh. 9 - Prob. 14CRECh. 9 - Prob. 15CRECh. 9 - Prob. 16CRECh. 9 - Prob. 17CRECh. 9 - Prob. 18CRECh. 9 - Prob. 19CRECh. 9 - Prob. 20CRECh. 9 - Prob. 21CRECh. 9 - Prob. 22CRECh. 9 - Prob. 23CRECh. 9 - Prob. 24CRECh. 9 - Prob. 25CRECh. 9 - Prob. 26CRECh. 9 - Prob. 27CRECh. 9 - Prob. 28CRECh. 9 - Prob. 29CRECh. 9 - Prob. 30CRECh. 9 - Prob. 31CRECh. 9 - Prob. 32CRECh. 9 - Prob. 33CRECh. 9 - Prob. 34CRECh. 9 - Prob. 35CRECh. 9 - Prob. 36CRECh. 9 - Prob. 37CRECh. 9 - Prob. 38CRECh. 9 - Prob. 39CRECh. 9 - Prob. 40CRECh. 9 - Prob. 1RECh. 9 - For Exercises 1—2, find the distance between the...Ch. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - Prob. 16RECh. 9 - Prob. 17RECh. 9 - Prob. 18RECh. 9 - Prob. 19RECh. 9 - Prob. 20RECh. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Prob. 25RECh. 9 - Prob. 26RECh. 9 - Prob. 27RECh. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Prob. 30RECh. 9 - Prob. 31RECh. 9 - Prob. 32RECh. 9 - Prob. 33RECh. 9 - Prob. 34RECh. 9 - Prob. 35RECh. 9 - Prob. 36RECh. 9 - Prob. 37RECh. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Prob. 41RECh. 9 - Prob. 42RECh. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Prob. 45RECh. 9 - Prob. 46RECh. 9 - Prob. 47RECh. 9 - Prob. 48RECh. 9 - Prob. 49RECh. 9 - Prob. 50RECh. 9 - Prob. 51RECh. 9 - Prob. 52RECh. 9 - Prob. 53RECh. 9 - Prob. 54RECh. 9 - Prob. 55RECh. 9 - Prob. 56RECh. 9 - Prob. 57RECh. 9 - Prob. 58RECh. 9 - Prob. 59RECh. 9 - Prob. 60RECh. 9 - Prob. 61RECh. 9 - Prob. 1TCh. 9 - Prob. 2TCh. 9 - Prob. 3TCh. 9 - Prob. 4TCh. 9 - Find the center of the circle that has a diameter...Ch. 9 - Prob. 6TCh. 9 - Prob. 7TCh. 9 - Prob. 8TCh. 9 - Prob. 9TCh. 9 - Prob. 10TCh. 9 - Prob. 11TCh. 9 - Prob. 12TCh. 9 - Prob. 13TCh. 9 - Prob. 14TCh. 9 - Prob. 15TCh. 9 - Prob. 16TCh. 9 - Prob. 17TCh. 9 - Prob. 18TCh. 9 - Prob. 1GACh. 9 - Prob. 2GACh. 9 - Prob. 3GA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that det (A) = det (B) Question 6. For what values of k is the matrix A = (2- k -1 -1 2) singular? karrow_forward1 4 5 Question 3. Find A-1 (if exists), where A = -3 -1 -2 2 3 4 Question 4. State 4 equivalent conditions for a matrix A to be nonsingulararrow_forwardHow long is a guy wire reaching from the top of a 15-foot pole to a point on the ground 9-feet from the pole? Question content area bottom Part 1 The guy wire is exactly feet long. (Type an exact answer, using radicals as needed.) Part 2 The guy wire is approximatelyfeet long. (Round to the nearest thousandth.)arrow_forward
- Question 6 Not yet answered Marked out of 5.00 Flag question = If (4,6,-11) and (-12,-16,4), = Compute the cross product vx w karrow_forwardConsider the following vector field v^-> (x,y): v^->(x,y)=2yi−xj What is the magnitude of the vector v⃗ located in point (13,9)? [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]arrow_forwardQuestion 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forward
- Question 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forwardAssume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forwardSelect the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forward
- Which of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
Grade 12 and UG/ Introduction to logical statements and truth tables; Author: Dr Trefor Bazett;https://www.youtube.com/watch?v=q2eyZZK-OIk;License: Standard YouTube License, CC-BY