Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9OQ
If two particles have equal momenta, are their kinetic energies equal? (a) yes, always (b) no, never (c) no, except when their speeds are the same (d) yes, as long as they move along parallel lines
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For problem 29 calculate
the speed in centimeters per second if the astronaut has the
laser on for 18 days (5 sig figs)
this is a practice problem, not a graded assignment
A boy throws a ball with a speed v at a vehicle that is approaching him with a speed V. After bouncing from the vehicle, the bail hits the boy with a speed(1)v. (2)v+V. (3)v+2V. (4)v+4V
Chapter 9 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - Prob. 9.5QQCh. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - Prob. 1OQCh. 9 - Prob. 2OQ
Ch. 9 - Prob. 3OQCh. 9 - Prob. 4OQCh. 9 - Prob. 5OQCh. 9 - Prob. 6OQCh. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - Prob. 10OQCh. 9 - Prob. 11OQCh. 9 - Two particles of different mass start from rest....Ch. 9 - Prob. 13OQCh. 9 - A basketball is tossed up into the air, falls...Ch. 9 - Prob. 15OQCh. 9 - Prob. 16OQCh. 9 - Prob. 17OQCh. 9 - Prob. 18OQCh. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - While in motion, a pitched baseball carries...Ch. 9 - You are standing perfectly still and then take a...Ch. 9 - Prob. 6CQCh. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - Prob. 9CQCh. 9 - Does a larger net force exerted on an object...Ch. 9 - Does a larger net force always produce a larger...Ch. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Prob. 9PCh. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - Prob. 12PCh. 9 - An estimated forcetime curve for a baseball struck...Ch. 9 - Prob. 14PCh. 9 - A glider of mass m is free to slide along a...Ch. 9 - Prob. 16PCh. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Prob. 20PCh. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - Prob. 23PCh. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Prob. 39PCh. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - Prob. 41PCh. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Consider a system of two particles in the xy...Ch. 9 - Prob. 53PCh. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - A ball of mass m is thrown straight up into the...Ch. 9 - Prob. 66APCh. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Prob. 73APCh. 9 - Prob. 74APCh. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Prob. 77APCh. 9 - Prob. 78APCh. 9 - Prob. 79APCh. 9 - A small block of mass m1 = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 84APCh. 9 - Prob. 85APCh. 9 - Prob. 86APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 88APCh. 9 - Prob. 89APCh. 9 - Prob. 90APCh. 9 - Prob. 91APCh. 9 - Prob. 92CPCh. 9 - Prob. 93CPCh. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Prob. 96CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The carbon isotope 14C is used for carbon dating of archeological artifacts. 14C (mass 2.34 x 10-26 kg) decays by the process known as beta decay in which the nucleus emits an electron (the beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and the neutrino are emitted at right angles to each other. The electron (mass 9.11 x 10-31 kg) has a speed of 5.00 x 107 m/s and the neutrino has a momentum of 8.00 x 10-24 kg • m/s. What is the recoil speed of the nucleus?arrow_forwardAn unstable uranium-238 suddenly bursts apart (fission) into thorium-234 (3.886×1025 kg) and helium-4 (6.646×10 kg) for which both fission products moves in opposite direction. If helium gains a kinetic energy of 2.333×1013 J after the fission process, what are the speed of fission products after the decay of uranium-238? 27arrow_forwardThe Moon’s craters are remnants of meteorite collisions. Suppose a fairly large asteroid that has a mass of 4.95 × 1012 kg (such an asteroid is about a kilometer across) strikes the Moon at a speed of 14.5 km/s relative to the Moon. What is the change in kinetic energy, in joules, in the collision? Such an event may have been observed by medieval English monks who reported observing a red glow and subsequent haze about the Moon.arrow_forward
- During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a 20 dive for a test of the aircraft’s 20 mm machine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds.Then, after allowing the cannons to cool, he shot another burst at 2000 m; his speed was then 344 m/s, the speed of the rounds relative to him was 730 m/s, and he was still in a dive. Almost immediately the canopy around him was shredded and his right air intake was damaged.With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)arrow_forwardIn an elastic collision of particles, one particle is stationary and another one is moving to the particle at speed u. After colliding, particle 1 and 2 moves at two different velocity, say v1 and v2. Why is the angle between v1 and v2 must be 90 degrees if the resulting particles and the initial particles all have the same mass?arrow_forwardTwo objects of equal mass are moving with equal speeds. They collide and move off together (perfectly inelastic collision) at half the value of their original speed. (a) What is the angle between their initial velocities? {answer should be 120o} (b) What percentage of the kinetic energy remains after the collision?arrow_forward
- Two balls A and B, having different but unknown masses, collide. A is initially at rest and B has a speed v. After the collision, B has a speed of v/2 and moves at a right angle to its original motion. (a) Find the direction in which ball A moves after the collision. (b) Can you determine the speed of A? Explain.arrow_forwardif A⃗ =2i+3j+6kA→=2i+3j+6k and A⃗ =3i−4j+2kA→=3i−4j+2k, then the angle between the two vectors isarrow_forwardQuestion 2 2 points A0.600-k, ornament is hanging by a 1 50m wire when it is suddenly hit by a 0.200ks missile traveling horizontally at 40 m/s The missile embeds itself in the omament during the collision. What is the speed of the omament and the missile after the collision? O a. 10.5 Im/s] O b. 4.7 (m/s] OC 3.5 [m/sl O d. zeroarrow_forward
- V1,f = V2,f - (m₁ — m²)v₁,i + 2m2V2,i m1 + m2 (m2 — m₁)v2,i + 2m₁V1,i - m1 + m2 (7) (8) For inelastic collisions, energy conservation [or Eq. (6)] does not apply. In general, momentum conservation [or Eq. (5)] itself cannot determine the two final velocities without more details be- ing given. However, there is a special case called a completely inelastic collision, in which the two objects stick together and move as one object after the collision. The two objects thus have the same final velocity, V₁₁f = V2,f = Vf. Combining this relation and Eq. (5), one obtains Vf m1v1,i+m2v2,i m1 + m2 (9)arrow_forwardThe mass of particle 1 is 11kg and the mass of particle 2 is 15kg. The initial velocity for particle 1 is (-104m/s)i + (216m/s)j and the initial velocity of particle 2 is (75m/s)i + (-152m/s)j.arrow_forward(a) At what speed (in m/s) would a 2.67× 104 kg airplane have to fly to have a momentum of 1.21 x 10° kg · m/s (similar to the momentum of a large moving ship)? m/s (b) What is the plane's momentum (in kg · m/s) when it is taking off at a speed of 58.8 m/s? kg • m/s (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship. O Since the momentum of the airplane is much larger than that of the ship, the ship will experience a significant recoil effect from the catapult. O ince the momentum of the airplane is much smaller than that of the ship, the ship will experience a significant recoil effect from the catapult. O Since the momentum of the airplane is much larger than that of the ship, the ship will not experience a significant recoil effect from the catapult. O Since the momentum of the airplane is much smaller than that of the ship, the ship will not…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY