Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.55P
To determine
The position of can to maximize the cooling rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(B) Cylindrical Water cans (diameter 6.5cm and length 15cm) are to be cooled from initial
temperature of 20°C by placing theme in a cooler with ambient temperature of 1°C.
Compare the initial cooling rates when the cans are laid horizontally to when the cans are
laid vertically. Take v = 15.55x10° m²/s, k=0.024 W/mK and Pr=0.7.
Nu = 0.53RA'
a4 for horizontal orientation
Nu = 0.59 Ra"4 for vertical orientation
(B) Cylindrical Water cans (diameter 6.5cm and length 15cm) are to be cooled from initial
temperature of 20°C by placing theme in a cooler with ambient temperature of 1˚C.
Compare the initial cooling rates when the cans are laid horizontally to when the cans are
laid vertically. Take v = 15.55x10 m²/s, k=0.024 W/mK and Pr-0.7.
Nu = 0.53 Ra¹ for horizontal orientation
Nu = 0.59 Ra¹/4 for vertical orientation
a cylindrical can of bean puree, has a diameter of 70 mm and height of 126 mm, and is initially at a uniform temperature of 25 ° C. The cans are stacked vertically inside a retort into which steam is introduced at 120 ° C. Calculate the temperature in the center of the can after a heating time of 0.55 h at 120 ° C. Now suppose the can is in the center of a vertical stack, insulated at its two ends by the presence of the remaining cans. (The heat capacity of the metal wall of the can can be neglected.) The heat transfer coefficient of steam is estimated to be 4640 W / m2 ° K. The physical properties of the bean are k = 0.750 W / m ° K and the thermal diffusivity = 2.007 x 10-7 m2 / s.a) Calculate the temperature in the center of the product.
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need the answer quicklyarrow_forwardI need the answer as soon as possiblearrow_forwardIndirect Cooling With Liquid Nitrogen. You are designing a system to cool an insulated silver plate of dimensions 2.00 cm × 2.00 cm × 0.60 cm. One end of a thermally insulated copper wire (diameter D = 2.70 mm and length L = 18.0 cm) is dipped into a vat of liquid nitrogen (T = 77.2 K), and the other end is attached to the bottom of the silver plate.(a) If the silver plate starts at room temperature (65.0 °F), what is the initial rate of heat flow between the plate and the liquid nitrogen reservoir?(b) Assuming the rate of heat flow calculated in part (a), estimate the temperature of the silver plate after 30.0 seconds.arrow_forward
- Cylindrical Water cans (diameter 6.5cm and length 15cm) are to be cooled from initial temperature of 20' C by placing theme in a cooler with ambient temperature of 1 C. Compare the initial cooling rates when the cans are laid horizontally to when the cans are laid vertically. Take v= 15.55x10" m/s, k=0.024 W/mK and Pr-0.7. Nu = 0.53RA for horizontal orientation Nu = 0.59 Ra for vertical orientation 1/4arrow_forwardIndirect Cooling With Liquid Nitrogen. You are designing a system to cool an insulated silver plate of dimensions 2.00 cm × 2.00 cm x 0.40 cm. One end of a thermally insulated copper wire (diameter D = 2.70 mm and length L = 12.0 cm) is dipped into a vat of liquid nitrogen (T = 77.2 K), and the other end is attached to the bottom of the silver plate. (a) If the silver plate starts at room temperature (73.0°F), what is the initial rate of heat flow between the plate and the liquid nitrogen reservoir? (b) Assuming the rate of heat flow calculated in part (a), estimate the temperature of the silver plate after 30.0 seconds.arrow_forward2-D: A fin may be manufactured as an integral part of a surface by using a casting or extrusion process, or it may be separately brazed or adhered to the surface. From thermal considerations, which option is preferred? 2-E: What is the difference between steady-state and transient heat transfer processes? Give an example for each of them. 2-F: What is the physical interpretation of the Biot number? 2-G: For flow over a flat plate, sketch variation of local convective heat transfer coefficient, h(x), versus the distance along the plate x for laminar, transition, and turbulent flow regimes.arrow_forward
- Parvinbhaiarrow_forwardA 12-by-12 inches ingot iron casting 60-in high is stripped from its moldwhile its temperature is 1740 °F. If it stands on end on the floor of a largefoundry having wall, floor, and roof temperatures of 80°F, what is the rate ofradiant-heat exchange between the casting and the roof wall, and floorsurfaces?arrow_forwardNumber 4 A food product wants to be produced in a small round shape (pellet) by freezing it in a water blast freezer freezer. Air freezer operates at -25°C. The initial product temperature is 25°C. The pellet has a diameter of 1.2 cm, and a density of 980 kg/m³. The initial freezing temperature is -2.5°C. The latent heat of freezing of the product is 280 kJ/kg. The thermal conductivity of the frozen product is 1.9 W/(m °C). The convective heat transfer coefficient is 40 W/(m² K). Calculate the freeze time. tf = answer in hourarrow_forward
- (h) A single-glazed glass window pane is an arched shape, consisting of a semicircle of radius 0.5 m on top of a rectangle 1.0 m wide by 2.0 m high, with no joints. The glass pane is 5 mm thick. One side of the window is exposed to air at 20°C and the other side is exposed to air at 5°C. Assuming convective heat transfer on both sides of the window, and conduction through it, determine the total thermal resistance of the window pane and hence the rate of heat transfer through it. (Convection: h = 15 W/m²K; Glass: k = 1.1 W/mK)arrow_forwardA 212-mm-square, 15-mm-thick tile has the thermo-physical properties of Pyrex (ϵ = 0.83) and emerges from a curing process at an initial temperature of Ti = 145°C. The backside of the tile is insulated while the upper surface is exposed to ambient air and surroundings at 25°C. (a) Estimate the time required for the tile to cool to a final, safe-to-touch temperature of Tf = 42°C. Use an average tile surface temperature of T¯=(Ti+Tf)/2 to estimate the average free convection coefficient and the linearized radiation coefficient. How sensitive is your estimate to the assumed value for T¯? (b) Estimate the required cooling time if ambient air is blown in parallel flow over the tile with a velocity of 10 m/sarrow_forwardCarbon steel balls (D= 26.8 mm, p 7833 kg/m", k = 54 W/m-K, c, 0.465 kJ/kg. C), are annealed by heating them first to 900°C in a furnace and then allowing them to cool slowly to 100°C in ambient air at 35°Ç. If the average heat transfer coefficient is 9.8 W/m-K, How in long the annealing process will take (in seconds)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license