Differential Equations with Boundary-Value Problems (MindTap Course List)
Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 1RE
To determine

The value of y(1.1), y(1.2), y(1.3), y(1.4) and y(1.5) for the differential equation y=2lnxy by using Euler’s method, Improved Euler’s method and Runga-Kutta method of fourth order.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The linear differential equation is y=2lnxy such that y(1)=2 and the value of step size is h=0.1 and h=0.05.

Concept used:

Runga-Kutta method:

The solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1=yn+16(k1+2k2+2k3+k4), where

k1=f(xn,yn)k2=f((xn+h2),(yn+hk12))k3=f((xn+h2),(yn+hk22))k4=f((xn+h),(yn+hk3))

Euler’s method

The approximated solution for the first order linear differential equation of the form y=f(x,y) with initial value as y(x0)=y0 with a step size of h is given as follows:

yn+1=yn+hf(xn,yn), where xn=x0+nh.

Improved Euler’s method:

As per the Improved Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

y*n+1=yn+hf(xn,yn)yn+1=yn+h2(f(xn,yn)+f(xn+1,y*n+1))

Calculation:

The linear differential equation is given as follows:

y=2ln(xy)

The value of step size is given as h=0.1 and h=0.05.

The initial value is given as y(1)=2.

The given differential equation is of the form y=f(x,y).

f(x,y)=ln(xy)

This implies that x0=1 and y0=2.

Obtain the solution of the given differential equation by Euler’s method for h=0.1.

As per the Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1=yn+hf(xn,yn)(1)

Substitute 0 for n in equation (1).

y1=y0+hf(x0,y0)

Substitute the value of x0,y0 and h in the above equation.

y1=2+(0.1)f(1,2)=2+(0.1)2ln(2)=2+0.1386=2.1386

Therefore, the value of y1 or y(1.1) is 2.1386.

Similarly, use the above procedure and the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn(Euler’s Method)

h=0.1

yn(Euler’s Method)

h=0.05

1.002.00002.0000
1.05 2.0693
1.102.13862.1469
1.15 2.2328
1.202.30972.3272
1.25 2.4299
1.302.51362.5409
1.35 2.6604
1.402.75042.7883
1.45 2.9245
1.503.02013.0690

Table 1

Table 1 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Euler’s method.

Obtain the solution of the given differential equation by Improved Euler’s method for h=0.1.

As per the Improved Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

y*n+1=yn+hf(xn,yn)(2)yn+1=yn+h2(f(xn,yn)+f(xn+1,y*n+1))  (3)

Substitute 0 for n in equation (2).

y*1=y0+hf(x0,y0)

Substitute the value of x0,y0 and h in the above equation.

y*1=2+(0.1)f(1,2)=2+(0.1)2ln(2)=2+0.1386=2.1386

Substitute 0 for n in equation (3).

y1=y0+h2(f(x0,y0)+f(x1,y*1))

Substitute the value of x0,y0,x1,y*1 and h in the above equation.

y1=2+0.12(f(1,2)+f(1.1,2.1386))=2+(0.05)(2ln(2)+2ln(1.12.1386))=2+(0.05)(1.3863+1.7109)=2.1549

Therefore, the value of y1 or y(1.1) is 2.1549.

Similarly, with above procedure used the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn (Improved Euler’s Method)

h=0.1

yn (Improved Euler’s Method)

h=0.05

1.002.00002.0000
1.05 2.0735
1.102.15492.1554
1.15 2.2459
1.202.34392.3450
1.25 2.4527
1.302.56722.5689
1.35 2.6937
1.402.82462.8269
1.45 2.9686
1.503.11573.1187

Table 2

Table 2 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Improved Euler’s method.

Obtain the solution of the given differential equation by Euler’s modified method for h=0.1.

As per the Runga-Kutta method of fourth order the value of yn+1 is given as follows:

yn+1=yn+16(k1+2k2+2k3+k4)(4)

Here, the value of k1,k2,k3 and k4 is given as follows:

k1=f(xn,yn)(5)k2=f((xn+h2),(yn+hk12))(6)k3=f((xn+h2),(yn+hk22))(7)k4=f((xn+h),(yn+hk3))(8)

Substitute 0 for n in equation (4).

y1=y0+h6(k1+2k2+2k3+k4)(9)

Calculate the value of k1 as follows:

k1=f(x0,y0)=f(1,2)=2ln(2)=1.3863

Calculate the value of k2 as follows:

k2=f((x0+h2),(y0+hk12))=f((1+0.05),(2+((0.05)(1.3863))))=f(1.05,2.069315)

Further solve the above equation.

k2=2ln(1.052.069315)=1.5520

Calculate the value of k1 as follows:

k3=f((x+h2),(y0+hk22))=f((1.05),(2.0776))=2ln(1.052.0776)=1.5600

Calculate the value of k4 as follows:

k4=f((x0+h),(y0+hk3))=f((1.1),(2.1560))=2ln(1.12.1560)=1.7271

Substitute the value of k1,k2,k3,k4 and y0 in equation (9).

y1=y0+0.16(k1+2k2+2k3+k4)=2+0.16(1.3863+21.5520+21.5600+1.7271)=2+0.1556=2.1556

Therefore, the value of y1 or y(1.1) is 2.1556.

Similarly, with above procedure used the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn (Runga-Kutta 4th order)

h=0.1

yn (Runga-Kutta 4th order)

h=0.05

1.002.00002.0000
1.05 2.0736
1.102.15562.1556
1.15 2.2462
1.202.34542.3454
1.25 2.4532
1.302.56952.5695
1.35 2.6944
1.402.82782.8278
1.45 2.9696
1.503.11973.1197

Table 3

Table 3 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Runga-Kutta method.

The table which shows a comparison between the values of y(1.2),y(1.3), y(1.4) and y(1.5) obtained by Euler’s method, improved Euler’s method and Runga-Kutta method of fourth order is as below.

xn

yn (Euler’s Method)

h=0.1

yn (Euler’s Method)

h=0.05

yn (Improved Euler’s Method)

h=0.1

yn (Improved Euler’s Method)

h=0.05

yn (Runga-Kutta 4th order)

h=0.1

yn (Runga-Kutta 4th order)

h=0.05

1.002.00002.00002.00002.00002.00002.0000
1.05 2.0693 2.0735 2.0736
1.102.13862.15692.15492.15542.15562.1556
1.15 2.2328 2.2459 2.2462
1.202.30972.32722.34392.34502.34542.3454
1.25 2.4299 2.4527 2.4532
1.302.51362.54092.56722.56892.56952.5695
1.35 2.6604 2.6937 2.6944
1.402.75042.78832.82462.82692.82782.8278
1.45 2.9245 2.9686 2.9696
1.503.02013.06903.11573.11873.11973.1197

Table 4

Thus, table 4 shows the comparison of the values of y(1.2),y(1.3), y(1.4) and y(1.5) obtained by Euler’s method, improved Euler’s method and Runga-Kutta method of fourth order.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
nd ave a ction and ave an 48. The domain of f y=f'(x) x 1 2 (= x<0 x<0 = f(x) possible. Group Activity In Exercises 49 and 50, do the following. (a) Find the absolute extrema of f and where they occur. (b) Find any points of inflection. (c) Sketch a possible graph of f. 49. f is continuous on [0,3] and satisfies the following. X 0 1 2 3 f 0 2 0 -2 f' 3 0 does not exist -3 f" 0 -1 does not exist 0 ve tes where X 0 < x <1 1< x <2 2
Morningstar tracks the total return for a large number of mutual funds. The following table shows the total return and the number of funds for four categories of mutual funds. Click on the datafile logo to reference the data. DATA file Type of Fund Domestic Equity Number of Funds Total Return (%) 9191 4.65 International Equity 2621 18.15 Hybrid 1419 2900 11.36 6.75 Specialty Stock a. Using the number of funds as weights, compute the weighted average total return for these mutual funds. (to 2 decimals) % b. Is there any difficulty associated with using the "number of funds" as the weights in computing the weighted average total return in part (a)? Discuss. What else might be used for weights? The input in the box below will not be graded, but may be reviewed and considered by your instructor. c. Suppose you invested $10,000 in this group of mutual funds and diversified the investment by placing $2000 in Domestic Equity funds, $4000 in International Equity funds, $3000 in Specialty Stock…
The days to maturity for a sample of five money market funds are shown here. The dollar amounts invested in the funds are provided. Days to Maturity 20 Dollar Value ($ millions) 20 12 30 7 10 5 6 15 10 Use the weighted mean to determine the mean number of days to maturity for dollars invested in these five money market funds (to 1 decimal). days

Chapter 9 Solutions

Differential Equations with Boundary-Value Problems (MindTap Course List)

Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Consider the initial-value problem y = 2x 3y + 1,...Ch. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Repeat Problem 19 using the improved Euler’s...Ch. 9.1 - Prob. 21ECh. 9.2 - Use the RK4 method with h = 0.1 to approximate...Ch. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Consider the initial-value problem y′ = 2y, y(0) =...Ch. 9.2 - Prob. 17ECh. 9.2 - Consider the initial-value problem y′ = 2x – 3y +...Ch. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.4 - Use Euler’s method to approximate y(0.2), where...Ch. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - In Problems 1-18 use Definition 7.1.1 to find ℒ{f...Ch. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - The electrostatic potential u between two...Ch. 9.5 - Consider the boundary-value problem y″ + xy = 0,...Ch. 9 - Prob. 1RECh. 9 - Prob. 2RECh. 9 - In Problems 1–4 construct a table comparing the...Ch. 9 - In Problems 1–4 construct a table comparing the...Ch. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RE
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY