Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
1st Edition
ISBN: 9781111580704
Author: Kevin D. Dahm, Donald P. Visco
Publisher: Cengage Learning
Question
Book Icon
Chapter 8.6, Problem 23P

(A)

Interpretation Introduction

Interpretation:

The best estimate of the fugacity in the liquid phase at temperature 400 K and pressure 100 bar for benzene.

Concept Introduction:

The expression of the vapor pressure using shortcut equation is,

log10Prsat=73(ω+1)(11Tr)=73(ω+1)(11T/Tc)

Here, reduced vapor pressure is Prsat, reduced temperature is Tr, acentric factor is ω, and temperature is T

The expression of the vapor pressure is,

Psat=Prsat(Pc)

The expression of the reduced temperature (Tr) is,

Tr=TTc

Here, system temperature is T.

The expression of the parameter used in calculation of a for Peng-Robinson EOS is,

κ=0.37464+1.54226ω0.26993ω2

Here, parameter is κ.

The Poynting equation to calculate the fugacity (f) is,

f=fsatexp{V_L(PPsat)RT}

Here, molar volume in liquid phase is V_L

(A)

Expert Solution
Check Mark

Explanation of Solution

Refer Appendix C.1, “Critical point, enthalpy of phase change, and liquid molar volume”; obtain the properties for different components as in Table (1).

 

Acentric factor

(ω)

Critical pressure

Pc(bar)

Critical temperature

Tc(K)

Molar volume

in liquid phase

V_L(cm3/mol)

Benzene0.21048.95562.0589.41
n-hexane0.330.25507.60131.59
Phenol0.44261.30694.2587.87

Write the expression of the vapor pressure using shortcut equation.

log10Prsat=73(ω+1)(11T/Tc)        (1)

Substitute 0.210 for ω, 562.05K for Tc, and 400K for T in Equation (1).

log10Prsat=73(0.210+1)(11400K/562.05K)log10Prsat=1.143Prsat=101.143=0.0719

Write the expression of the vapor pressure.

Psat=Prsat(Pc)        (2)

Substitute 0.0719 for Prsat, and 48.95bar for Pc in Equation (2).

Psat=(0.0719)(48.95bar)=3.52bar

Thus, the best estimate of vapor pressure at temperature of 400K is 3.52bar.

Write the expression of the reduced temperature (Tr).

Tr=TTc        (3)

Substitute 400K for T and 562.05K for Tc in Equation (3).

Tr=400K562.05K=0.711

Write the expression of the parameter used in calculation of a for Peng-Robinson EOS.

κ=0.37464+1.54226ω0.26993ω2        (4)

Substitute 0.210 for ω in Equation (4).

κ=0.37464+1.54226(0.210)0.26993(0.210)2=0.6866

Write the expression of the value of α expressed as a function of the reduced temperature.

α=[1+κ(1Tr0.5)]2        (5)

Substitute 0.6866 for κ, and 0.711 for Tr in Equation (5).

α=[1+0.6866(10.7110.5)]2=1.22

Write the expression of the value of parameter a at the critical point.

ac=0.45724R2Tc2Pc        (6)

Here, gas constant is R.

Substitute 83.14barcm3/molK for R, 562.05K for Tc, and 48.95bar for Pc in Equation (6).

ac=0.45724(83.14barcm3/molK)2(562.05K)248.95bar=20.396×106barcm6/mol2

Write the expression of the parameter a.

a=acα        (7)

Substitute 1.22 for α and 20.396×106barcm6/mol2 for ac in Equation (7).

a=(20.396×106barcm6/mol2)(1.22)=2.50×107barcm6/mol2

Write the expression of the parameter b.

b=0.07780RTcPc        (8)

Substitute 83.14barcm3/molK for R, 562.05K for Tc, and 48.95bar for Pc in Equation (8).

b=0.07780(83.14barcm3/molK)(562.05K)48.95bar=74.3cm3/mol

Write the expression of the molar volume (V_) from the Peng-Robinson equation.

P=RTV_baV_(V_+b)+b(V_b)        (9)

Here, pressure is P.

Substitute 3.52bar for P, 83.14barcm3/molK for R, 400K for T, 2.50×107barcm6/mol2 for a, and 74.3cm3/mol for b in Equation (9).

3.52bar=[(83.14barcm3/molK)(400K)V_74.3cm3/mol2.50×107barcm6/mol2V_(V_+74.3cm3/mol)+74.3cm3/mol(V_74.3cm3/mol)]V_=8728cm3/mol

Write the expression of compressibility factor (Z).

Z=PV_RT        (10)

Substitute 3.52bar for P, 8728cm3/mol for V_, 83.14barcm3/molK for R, and 400 K for T in Equation (10).

Z=3.52bar(8728cm3/mol)(83.14barcm3/molK)400K=0.924

Write the expression of the dimensionless group that include the Peng-Robinson parameter (A).

A=aPR2T2        (11)

Substitute 2.50×107barcm6/mol2 for a, 3.52bar for P, 83.14barcm3/molK for R, and 400 K for T in Equation (11).

A=(2.50×107barcm6/mol2)(3.52bar)(83.14barcm3/molK)2(400K)2=0.080

Write the expression of the dimensionless group that include the Peng-Robinson parameter (B).

B=bPRT        (12)

Substitute 74.3cm3/mol for b, 3.52bar for P, 83.14barcm3/molK for R, and 400 K for T in Equation (12).

B=(74.3cm3/mol)(3.52bar)(83.14barcm3/molK)(400K)=0.00786

Write the fugacity of a compound as described by the Peng-Robinson equation.

ln(fsatP)=(Z1)ln(ZB)A2B2ln[Z+(1+2)BZ+(12)B]        (13)

Here, the fugacity of a liquid or vapor that is at its vapor pressure is fsat.

Substitute 0.924 for Z, 3.52bar for P, 0.00786 for B, and 0.080 for A in Equation (13).

ln(fsat3.52bar)=[(0.9241)[ln(0.9240.00786)]0.0802(0.00786)2{ln[0.924+(1+2)(0.00786)0.924+(12)(0.00786)]}]fsat3.52bar=e[(0.9241)[ln(0.9240.00786)]0.0802(0.00786)2{ln[0.924+(1+2)(0.00786)0.924+(12)(0.00786)]}]fsat=(3.52bar)(0.929)=3.27bar

Write the Poynting equation to calculate the fugacity (f).

f=fsatexp{V_L(PPsat)RT}        (14)

Substitute 3.27bar for fsat, 89.41cm3/mol for V_L, 100bar for P, 3.52bar for Psat, 83.14barcm3/molK for R, and 400 K for T in Equation (14).

f=(3.27bar)exp{89.41cm3/mol(100bar3.52bar)(83.14barcm3/molK)(400 K)}=(3.27bar)(1.297)=4.24bar

Thus, the fugacity in the liquid phase at temperature of 400K and pressure of 100bar is 4.24bar.

(B)

Interpretation Introduction

Interpretation:

The best estimate of the fugacity in the liquid phase at temperature 400 K and pressure 100 bar for n-hexane.

(B)

Expert Solution
Check Mark

Explanation of Solution

Substitute 0.3 for ω, 507.60K for Tc, and 400K for T in Equation (1).

log10Prsat=73(ω+1)(11T/Tc)log10Prsat=73(0.3+1)(11400K/507.60K)Prsat=0.153

Substitute 0.153 for Prsat, and 30.25bar for Pc in Equation (2).

Psat=Prsat(Pc)=(0.153)(30.25bar)=4.62bar

Thus, the best estimate of vapor pressure at temperature of 400K is 4.62bar.

Substitute 400K for T and 507.60K for Tc in Equation (3).

Tr=TTc=400K507.60K=0.788

Substitute 0.3 for ω in Equation (4).

κ=0.37464+1.54226ω0.26993ω2=0.37464+1.54226(0.3)0.26993(0.3)2=0.8130

Substitute 0.8130 for κ, and 0.788 for Tr in Equation (5).

α=[1+κ(1Tr0.5)]2=[1+0.8130(10.7880.5)]2=1.19

Substitute 83.14barcm3/molK for R, 507.60K for Tc, and 30.25bar for Pc in Equation (6).

ac=0.45724R2Tc2Pc=0.45724(83.14barcm3/molK)2(507.60K)230.25bar=26.92×106barcm6/mol2

Substitute 1.19 for α and 26.92×106barcm6/mol2 for ac in Equation (7).

a=acα=(26.92×106barcm6/mol2)(1.19)=3.21×107barcm6/mol2

Substitute 83.14barcm3/molK for R, 507.60K for Tc, and 30.25bar for Pc in Equation (8).

b=0.07780RTcPc=0.07780(83.14barcm3/molK)(507.60K)30.25bar=108.5cm3/mol

Substitute 4.62bar for P, 83.14barcm3/molK for R, 400K for T, 3.21×107barcm6/mol2 for a, and 108.5cm3/mol for b in Equation (9).

P=RTV_baV_(V_+b)+b(V_b)4.62bar=[(83.14barcm3/molK)(400K)V_108.5cm3/mol3.21×107barcm6/mol2V_(V_+108.5cm3/mol)+108.5cm3/mol(V_108.5cm3/mol)]V_=6252cm3/mol

Substitute 4.62bar for P, 6252cm3/mol for V_, 83.14barcm3/molK for R, and 400 K for T in Equation (10).

Z=PV_RT=4.62bar(6252cm3/mol)(83.14barcm3/molK)400K=0.869

Substitute 3.21×107barcm6/mol2 for a, 4.62bar for P, 83.14barcm3/molK for R, and 400 K for T in Equation (11).

A=aPR2T2=(3.21×107barcm6/mol2)(4.62bar)(83.14barcm3/molK)2(400K)2=0.134

Substitute 108.5cm3/mol for b, 4.62bar for P, 83.14barcm3/molK for R, and 400 K for T in Equation (12).

B=bPRT=(108.5cm3/mol)(4.62bar)(83.14barcm3/molK)(400K)=0.015

Substitute 0.869 for Z, 4.62bar for P, 0.015 for B, and 0.134 for A in Equation (13).

ln(fsatP)=(Z1)ln(ZB)A2B2ln[Z+(1+2)BZ+(12)B]ln(fsat4.62bar)=[(0.8691)[ln(0.8690.015)]0.1342(0.015)2{ln[0.869+(1+2)(0.015)0.869+(12)(0.015)]}]fsat4.62bar=e[(0.8691)[ln(0.8690.015)]0.1342(0.015)2{ln[0.869+(1+2)(0.015)0.869+(12)(0.015)]}]fsat=(4.62bar)(0.883)=4.08bar

Substitute 4.08bar for fsat, 131.59cm3/mol for V_L, 100bar for P, 4.62bar for Psat, 83.14barcm3/molK for R, and 400 K for T in Equation (14).

f=fsatexp{V_L(PPsat)RT}=(4.08bar)exp{131.59cm3/mol(100bar4.62bar)(83.14barcm3/molK)(400 K)}=(4.08bar)(1.46)=5.95bar

Thus, the fugacity in the liquid phase at temperature of 400K and pressure of 100bar is 5.95bar.

(C)

Interpretation Introduction

Interpretation:

The best estimate of the fugacity in the liquid phase at temperature 400 K and pressure 100 bar for phenol.

Concept Introduction:

The expression of the vapor pressure using Antoine equation is,

Psat=10[ABC+T(°C)]

Here, vapor pressure is Psat, temperature in degree Celsius is T(°C), and Antoine coefficients are A,B,andC.

(C)

Expert Solution
Check Mark

Explanation of Solution

Convert the unit of temperature from Kelvin to degree Celsius.

T=400K=(400273.15)°C=126.85°C

Write the expression of the vapor pressure using Antoine equation.

Psat=10[ABC+T(°C)]        (15)

Refer Appendix E, “Antoine Equations”; obtain the following properties for component 1 and 2 as in Table (1).

ParametersPhenol
A7.1330
B1516.79
C174.95

Substitute 126.85°C for T, 7.1330 for A, 1516.79 for B, and 174.95 for C in Equation (15).

Psat=10[7.13301516.79174.95+126.85]=128mmHg(0.00133bar1mmHg)=0.171bar

Thus, the best estimate of vapor pressure at temperature of 400K is 0.171bar.

Assume ideal gas behavior, as the obtained value of pressure is less,

fsat=Psat

Substitute 0.171bar for Psat.

fsat=0.171bar

Substitute 0.171bar for fsat, 87.87cm3/mol for V_L, 100bar for P, 0.171bar for Psat, 83.14barcm3/molK for R and 400 K for T in Equation (14).

f=fsatexp{V_L(PPsat)RT}=(0.171bar)exp{87.87cm3/mol(100bar0.171bar)(83.14barcm3/molK)(400 K)}=(0.171bar)(1.302)=0.223bar

Thus, the fugacity in the liquid phase at temperature of 400K and pressure of 100bar is 0.223bar.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The