Differential Equations: An Introduction to Modern Methods and Applications
Differential Equations: An Introduction to Modern Methods and Applications
3rd Edition
ISBN: 9781118531778
Author: James R. Brannan, William E. Boyce
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8.3, Problem 17P

In this problem, we establish that the local truncation error for the improved Euler formula is proportional to h 3 . If we assume that the solution ϕ of the initial value problem y ' = f ( t , y ) , y ( t 0 ) = y 0 has derivatives that are continuous through the third order ( f has continuous second partial derivatives), then it follows that

ϕ ( t n + h ) = ϕ ( t n ) + ϕ ' ( t n ) h + ϕ ' ' ( t n ) 2 ! h 2 + ϕ ' ' ' ( t ¯ n ) 3 ! h 3 ,

Where t n < t n ¯ < t n + h . Assume that y n = ϕ ( t n ) .

a) Show that, for y n + 1 as given by Eq.(5) ,

e n + 1 = ϕ ( t n + 1 ) y n + 1

= ϕ ' ' ( t n ) h { f [ t n + h , y n + h f ( t n , y n ) ] f ( t n , y n ) } 2 ! + ϕ ' ' ' ( t n ) h 3 3 ! (i)

b) Making use of the facts that ϕ ' ' ( t ) = f t [ t , ϕ ( t ) ] + f y [ t , ϕ ( t ) ] ϕ ' ( t ) and that the Taylor approximation with a remainder for a function F ( t , y ) of two variable is

F ( a + h , b + k ) = f ( a , b ) + F t ( a , b ) h + F y ( a , b ) h + 1 2 ! ( h 2 F t t + 2 h k F t y + k 2 F y y ) | x = ξ , y = η

Where ξ lies between a and a + h and η lies between b and b + k , show that the first term on the right side of Eq. (i) is proportional to h 3 plus higher order terms. This is the desired result.

c) Show that if f ( t , y ) is linear in t and y , then e n + 1 = ϕ ' ' ' ( t n ) h 3 / 6 , where t n < t n ¯ < t n + h .

Hint: What are f t t , f t y , and f y y ?

Blurred answer

Chapter 8 Solutions

Differential Equations: An Introduction to Modern Methods and Applications

Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - Consider the initial value problem...Ch. 8.1 - Consider the initial value problem Use Euler’s...Ch. 8.1 - Consider the initial value problem...Ch. 8.1 - Consider the initial value problem Where is a...Ch. 8.1 - Consider the initial value problem y=y2t2,y(0)=,...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - Complete the calculations leading to the entries...Ch. 8.2 - Using three terms in the Taylor series given in...Ch. 8.2 - In each of Problems 15 and 16, estimate the local...Ch. 8.2 - In each of Problems 15 and 16, estimate the local...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - Consider the initial value problem y=cos5t,y(0)=1....Ch. 8.2 - Using a step size h=0.05 and the Euler method,...Ch. 8.2 - The following problem illustrates a danger that...Ch. 8.2 - The distributive law a(bc)=abac does not hold, in...Ch. 8.2 - In this section we stated that the global...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - Complete the calculation leading to the entries in...Ch. 8.3 - Confirm the results in Table 8.3.2 by executing...Ch. 8.3 - Consider the initial value problem y=t2+y2,y(0)=1....Ch. 8.3 - Consider the initial value problem Draw a...Ch. 8.3 - In this problem, we establish that the local...Ch. 8.3 - Consider the improved Euler method for solving the...Ch. 8.3 - In each of Problems 19 and 20, use the actual...Ch. 8.3 - In each of Problems 19 and 20, use the actual...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - Consider the example problemwith the initial...Ch. 8.4 - Consider the initial value problem...Ch. 8.P1 - Assume that the shape of the dispensers are...Ch. 8.P1 - After viewing the results of her computer...Ch. 8.P2 - Show that Euler’s method applied to the...Ch. 8.P2 - Simulate five sample trajectories of Eq. (1) for...Ch. 8.P2 - Use the differential equation (4) to generate an...Ch. 8.P2 - Variance Reduction by Antithetic Variates. A...

Additional Math Textbook Solutions

Find more solutions based on key concepts
The equation ∂2u∂x2+∂2u∂y2=0

Fundamentals of Differential Equations and Boundary Value Problems

Assessment 1-1A In a big red box, there are 7 smaller blue boxes. In each of the blue boxes, there are 7 black ...

A Problem Solving Approach to Mathematics for Elementary School Teachers (12th Edition)

Checkpoint1 Use the substitution method to solve this system: Answers to Checkpoint exercises are found at the...

Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)

Answer the following regarding the English alphabet. a. Determine the ratio of vowels to consonants. b. What is...

A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)

Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Text book image
    Calculus For The Life Sciences
    Calculus
    ISBN:9780321964038
    Author:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
    Publisher:Pearson Addison Wesley,
Text book image
Calculus For The Life Sciences
Calculus
ISBN:9780321964038
Author:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:Pearson Addison Wesley,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY