INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.2, Problem 28P
A worker walks up the sloped roof that is defined by the curve y=(5e0.01x) ft, where x is in feet. Determine how high h he can go without slipping. The coefficient of static friction is, μs = 0.6.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that block Q do not slip on block P. You can take the static coefficient of friction between Q and P as ?. Furthermore, it is to be noted the friction offer by the surface R is zero. You are also requested to draw the FBD.
If 7 =200N. determine the friction developed between the S0-kg crate and the ground. The coefficient of static friction between the crate and the ground is i, = 0.3.
A 25-kg ladder, 4 m long, rests on a rough floor and against a vertical wall. The ladder makes an angle of 35 with the horizontal as shown. It starts to slip when a man weighing 75 kg has climbed halfway up. If f = 0.20 at the wall, find the coefficient of friction (µf) at the floor.
Chapter 8 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Ch. 8.2 - Determine the friction force at the surface of...Ch. 8.2 - Determine M to cause impending motion of the...Ch. 8.2 - Determine the force P to move block B.Ch. 8.2 - Determine the force P needed to cause impending...Ch. 8.2 - Determine the friction developed between the 50-kg...Ch. 8.2 - Determine the minimum force P to prevent the 30-kg...Ch. 8.2 - Determine the maximum force P that can be applied...Ch. 8.2 - If the coefficient of static friction at contact...Ch. 8.2 - Determine the maximum force P that can be applied...Ch. 8.2 - Prob. 6FP
Ch. 8.2 - Blocks A, B, and C have weights of 50 N, 25 N, and...Ch. 8.2 - If the coefficient of static friction at all...Ch. 8.2 - Using the coefficients of static friction...Ch. 8.2 - Determine the maximum force P the connection can...Ch. 8.2 - The tractor exerts a towing force T=400 lb....Ch. 8.2 - Prob. 3PCh. 8.2 - The winch on the truck is used to hoist the...Ch. 8.2 - The automobile has a mass of 2 Mg and center of...Ch. 8.2 - The automobile has a mass of 2 Mg and canter of...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - Prob. 9PCh. 8.2 - Prob. 10PCh. 8.2 - Determine the maximum weight W the man can lift...Ch. 8.2 - The block brake is used to stop the wheel from...Ch. 8.2 - If a torque of M=300 Nm is applied to the...Ch. 8.2 - The car has a mass of 1.6 Mg and center of mass at...Ch. 8.2 - Prob. 15PCh. 8.2 - The 180-Ib man climbs up the ladder and stops at...Ch. 8.2 - The 180-Ib man climbs up the ladder and stops at...Ch. 8.2 - The spool of wire having a weight of 300 Ib rests...Ch. 8.2 - Prob. 19PCh. 8.2 - The ring has a mass of 0.5 kg and is resting on...Ch. 8.2 - A man attempts to support a stack of books...Ch. 8.2 - The tongs are used to lift the 150-kg crate, whose...Ch. 8.2 - The beam is supported by a pin at A and a roller...Ch. 8.2 - The uniform thin pole has a weight of 30 Ib and a...Ch. 8.2 - The uniform pole has a weight of 30 Ib and a...Ch. 8.2 - The block brake is used to stop the wheel from...Ch. 8.2 - Solve Prob. 8-26 if the couple moment M0 is...Ch. 8.2 - A worker walks up the sloped roof that is defined...Ch. 8.2 - Prob. 29PCh. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Determine the smallest force P that must be...Ch. 8.2 - The man having a weight of 200 Ib pushes...Ch. 8.2 - The uniform hoop of weight W is subjected to the...Ch. 8.2 - Prob. 35PCh. 8.2 - Determine the minimum force P needed to push the...Ch. 8.2 - Prob. 37PCh. 8.2 - The coefficient of static friction between the...Ch. 8.2 - Determine the smallest coefficient of static...Ch. 8.2 - Prob. 40PCh. 8.2 - If the coefficient of static friction at A and B...Ch. 8.2 - The 100-kg disk rests on a surface for which, B =...Ch. 8.2 - Investigate whether the equilibrium can be...Ch. 8.2 - Prob. 44PCh. 8.2 - The beam AB has a negligible mass and thickness...Ch. 8.2 - It is supported at one end by a pin and at the...Ch. 8.2 - Crates A and B weigh 200 Ib and 150 Ib,...Ch. 8.2 - Two blocks A and B, each having a mass of 5 kg,...Ch. 8.2 - The uniform crate has a mass of 150 kg. If the...Ch. 8.2 - The uniform crate has a mass of 150 kg. If the...Ch. 8.2 - Beam AB has a negligible mass and thickness, and...Ch. 8.2 - Beam AB has a negligible mass and thickness, and...Ch. 8.2 - Determine the smallest couple moment that can be...Ch. 8.2 - Determine the greatest angle so that the ladder...Ch. 8.2 - The wheel weights 20 lb and rests on a surface for...Ch. 8.2 - Prob. 56PCh. 8.2 - The man has a weight of 200 lb, and the...Ch. 8.2 - Prob. 1CPCh. 8.2 - Prob. 4CPCh. 8.2 - Explain how to find the maximum force this man can...Ch. 8.4 - Determine the largest angle that will cause the...Ch. 8.4 - If the beam AD is loaded as shown, determine the...Ch. 8.4 - The wedge is used to level the member. Determine...Ch. 8.4 - Prob. 61PCh. 8.4 - If P=250 N, determine the required minimum...Ch. 8.4 - Determine the minimum applied force P required to...Ch. 8.4 - If the coefficient of static friction between all...Ch. 8.4 - Determine the smallest force P needed to lift the...Ch. 8.4 - Prob. 66PCh. 8.4 - If the clamping force at G is 900 N, determine the...Ch. 8.4 - If a horizontal force of F = 50 N is applied...Ch. 8.4 - Prob. 69PCh. 8.4 - If the force F is removed from the handle of the...Ch. 8.4 - Prob. 71PCh. 8.4 - If the clamping force on the boards is 600 lb,...Ch. 8.4 - Prob. 73PCh. 8.4 - The square-threaded bolt is used to join two...Ch. 8.4 - The shaft has a square-threaded screw with a lead...Ch. 8.4 - If couple forces of F=35 N are applied to the...Ch. 8.4 - Prob. 77PCh. 8.4 - The device is used to pull the battery cable...Ch. 8.4 - Determine the clamping force on the board A if the...Ch. 8.4 - If the required clamping force on the board A is...Ch. 8.4 - If a horizontal force of P = 100 N is applied...Ch. 8.4 - Determine the horizontal force P that must be...Ch. 8.5 - A cylinder having a mass of 250 kg is to be...Ch. 8.5 - A cylinder having a mass of 250 kg is to be...Ch. 8.5 - A 180-lb farmer tries to restrain the cow from...Ch. 8.5 - The 100-lb boy at A is suspended from the cable...Ch. 8.5 - The 100-lb boy at A is suspended from the cable...Ch. 8.5 - Prob. 88PCh. 8.5 - A cable is attached to the 20-kg plate B, passes...Ch. 8.5 - Prob. 90PCh. 8.5 - Prob. 91PCh. 8.5 - Determine the force P that must be applied to the...Ch. 8.5 - Prob. 93PCh. 8.5 - Determine the weight of the cylinder if the...Ch. 8.5 - If slipping does not occur at the wall, determine...Ch. 8.5 - The coefficient of static friction between the...Ch. 8.5 - Prob. 97PCh. 8.5 - Show that the frictional relationship between the...Ch. 8.5 - The wheel is subjected to a torque of M = 50 N m...Ch. 8.5 - Using the coefficients of static friction...Ch. 8.5 - If the coefficient of static friction between the...Ch. 8.5 - Idler pulley A, and motor pulley B. If the motor...Ch. 8.5 - Using the coefficient of static friction...Ch. 8.5 - Determine the smallest counterclockwise twist or...Ch. 8.5 - Determine the largest angles so that the cord...Ch. 8.5 - Determine the smallest stretch of the spring...Ch. 8.8 - If the coefficient of static is, s = 0.3,...Ch. 8.8 - Prob. 108PCh. 8.8 - Prob. 109PCh. 8.8 - Prob. 110PCh. 8.8 - Prob. 111PCh. 8.8 - Prob. 113PCh. 8.8 - Prob. 114PCh. 8.8 - Prob. 115PCh. 8.8 - Prob. 116PCh. 8.8 - Prob. 117PCh. 8.8 - If the coefficient of static friction is. k....Ch. 8.8 - If the coefficient of static friction between the...Ch. 8.8 - If the coefficient of kinetic friction between the...Ch. 8.8 - if the force P is applied horizontally to the...Ch. 8.8 - Prob. 122PCh. 8.8 - Prob. 123PCh. 8.8 - Prob. 124PCh. 8.8 - Prob. 125PCh. 8.8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8.8 - Prob. 127PCh. 8.8 - The vehicle has a weight of 2600 lb and center of...Ch. 8.8 - The tractor has a weight of 16 000 lb and the...Ch. 8.8 - Prob. 130PCh. 8.8 - Prob. 131PCh. 8.8 - The 1.4-Mg machine is to be moved over a level...Ch. 8.8 - Prob. 1RPCh. 8.8 - The uniform 60-kg crate C rests uniformly on a...Ch. 8.8 - A 35-kg disk rests on an inclined surface for...Ch. 8.8 - The cam is subjected to a couple moment of 5N m....Ch. 8.8 - The three stone blocks have weights of, WA =...Ch. 8.8 - Prob. 6RPCh. 8.8 - Prob. 7RPCh. 8.8 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The square-threaded screw 0f the C-clamp has a mean diameter of 8 mm and a pitch of 1.6 mm. The coefficient of static friction between the threads is 0.2. If the torque C=1.50Nm is used to tighten the clamp, determine (a) the clamping force; and (b) the torque required to loosen the clamp.arrow_forwardThe leather rein used to fasten the horse to the hitching rail weighs 3.5 oz per foot. The coefficient of static friction between the rail and the rein is 0.6. If a 34-lb force acting on the bridle is sufficient to restrain the horse, determine the smallest safe length L for the free end of the rein.arrow_forwardQ1/ As shown in Fig.( 1 ). A horizontal force of P=350N is required to just push the crate up the plane. If you know the coefficient of static friction between the plane and the crate (0.3). Find the mass of the crate.arrow_forward
- 1. The car has a mass of 1600 kg and centre of mass at G. If the coefficient of static friction between the shoulder of the road and the 0.75m tires is u = 0.4 determine the greatest slope 0 the shoulder can have without causing the car to slip or tip over if the car travels along the shoulder at constant velocity. [Ans. 0 = 21.8°] 1.5m TRY THIS PROBLEM AFTER YOU'VE DONE THE BF LABarrow_forwardThe 500KN block shown is in contact with a 45°incline. The w coefficient of friction is 0.25. Determine the horizontal force P necessary to 1.Just start the block up the 45° incline 2.Just to prevent the motion down the incline. 3.lf P=400KN, what is the amount and direction of friction force?arrow_forwardFrom the given data, determine the direction and minimum value of the force F required to move the vehicle to impend up the hill. Wcar = 1000 N B = 28° Coefficient of friction = 0.15 F Caarrow_forward
- A ladder is leaning against a vertical wall, and both ends of the ladder are at the point of slipping. The coefficient of static friction between the ladder and the horizontal surface is ₁0.215 and the coefficient of friction between the ladder and the wall is #₂ = 0.303. Determine the maximum angle a with the vertical that the ladder can make without falling on the ground. α= x10 TOOLS Larrow_forwardTake moment at A to find the value of N1 If f = 0.2 at the wall, find the coefficient of friction at the floor. Find the value of N2 in terms of Y or V. If f = 0.2 at the wall, find the coefficient of friction at the floor. Find the value of f in terms of X or H.arrow_forwardplease show the fbd and the complete solution. thanks!arrow_forward
- A mountain camper has problems with his off road vehicle. To hold it in place the camper wraps a rope abound a treen + turns. The coefficient of friction between the rope and the tree is u. = 0.23. The car pulls on its end of the rope with a force of 2250 N. The camper wants to pull on the rope with a force no greater than P = 54 N. P Determine the integer value of n. (Enter the minimum possible integer value of n.)arrow_forward4. The 500KN block is in contact with a 45degree incline. The coefficient of static friction is 0.25. Which of the following most nearly gives the horizontal force P necessary to just prevent the motion down the incline? 1. 970KN 2. 300kN 3. 830kN 4. 640KNarrow_forward1.The figure shows 3 blocks. Block C hangs from a rope which passes through a fixed cylinder and is attached to block B. Find the maximum mass of block C so that block B does not move to the right. Take into account that there are frictional forces at all points of contact. Consider the given values of the masses and , the coefficient of static friction between surfaces µ1 and the coefficient of friction static between the cylinder and the uC chord. Here are the values: ma= 72 kg mb= 62 kg u1= 0,47 uC=0,37arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License