University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 75AP
Shown below is a small ball of mass m attached to a string of length
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ball of mass 0.5kg is tied to a string of length 1.0 meters, and the other end of the string is tied to a rigid support. The ball is held straight out horizontally and is then released. a) What is the speed of the ball at the lowest point of its motion? b) What is the tension in the string at its joint?
A pendulum, comprising a light string of length L and a small sphere, swings in the vertical plane. The string hits a peg located a distance d below the point of suspension (as shown). (a) Show that if the sphere is released from a height below that of the peg, it will return to this height after the string strikes the peg. (b) Show that if the pendulum is released from rest at the horizontal position (θ = 90°) and is to swing in a complete circle centered on the peg, the minimum value of d must be 3L/5.
A 292.0 kg rocket moving radially outward from Earth has a speed of 7.86 km/s when its engine shuts off 124 km above Earth's surface.
A) Assuming negligible air drag acts on the rocket, find the rocket's kinetic energy when the rocket is 1000 km above the Earth's surface?
B) What maximum height above the surface is reached by the rocket?
Chapter 8 Solutions
University Physics Volume 1
Ch. 8 - Check Your understanding In Example 8.1 what are...Ch. 8 - Check Your Understanding What are the values of...Ch. 8 - Check Your Understanding When the length of the...Ch. 8 - Check Your Understanding Suppose the mass in...Ch. 8 - Check Your Understanding A two-dimensional,...Ch. 8 - Check Your Understanding Fend the forces on the...Ch. 8 - Check Your Understanding How high above the bottom...Ch. 8 - Check Your Understanding You probably recall that,...Ch. 8 - Check Your Understanding What potential energy...Ch. 8 - Check Your Understanding Repeat Example 8.10 when...
Ch. 8 - Check Your Understanding Find x(t) for the...Ch. 8 - The kinetic energy of a system must always be...Ch. 8 - The force exerted by a diving board is...Ch. 8 - Describe the gravitational potential energy...Ch. 8 - A couple of soccer balls of equal mass are kiched...Ch. 8 - What is the dominant factor that affects the speed...Ch. 8 - Two people observe a leaf falling from a tree. One...Ch. 8 - What is the physical meaning of a non-conservative...Ch. 8 - A bottle rocket is shot straight up in the air...Ch. 8 - An external force acts on a particle during a trip...Ch. 8 - When a body slides down an inclined plane, does...Ch. 8 - Consider the following scenario. A car for which...Ch. 8 - A dropped ball bounces to one-half its original...Ch. 8 - “ E=K+Uconstant is a special case of the work...Ch. 8 - In a common physics demonstration, a bowling ball...Ch. 8 - A child jumps tip and down on a bed, reaching a...Ch. 8 - Can a non-conservative force increase the...Ch. 8 - Neglecting air resistance, how much would I have...Ch. 8 - A box is dropped onto a spring at its equilibrium...Ch. 8 - Using values from Table 8.1, how many DNA...Ch. 8 - If the energy in fusion bombs were used to supply...Ch. 8 - A camera weighing 10 N falls from a small drone...Ch. 8 - Someone drops a 50 — g pebble off of a docked...Ch. 8 - A cat’s crinkle ball toy of mass 15 g is thrown...Ch. 8 - A force F(x)=(3.0/x)N acts on a particle as it...Ch. 8 - A force F(x)=(5.0x2+7.0x)N acts on a particle as...Ch. 8 - Find the force corresponding to the potential...Ch. 8 - The potential energy function for either one of...Ch. 8 - A particle of mass 2.0 kg moves under the...Ch. 8 - A particle of mass 2.0 kg moves under the...Ch. 8 - A crate on rollers is being pushed without...Ch. 8 - A boy throws a ball of mass 0.25 kg straight...Ch. 8 - A mouse of mass 200 g falls 100 m down a vertical...Ch. 8 - Using energy considerations and assuming...Ch. 8 - A 1.0-kg ball at the end of a 2.0-m string swings...Ch. 8 - Ignoring details associated with friction, extra...Ch. 8 - Tarzan grabs a vine hanging vertically from a tall...Ch. 8 - Assume that the force of a bow on an arrow behaves...Ch. 8 - A 100 — kg man is skiing across level ground at a...Ch. 8 - A sled of mass 70 kg starts from rest and slides...Ch. 8 - A girl on a skateboard (total mass of 40 kg) is...Ch. 8 - A baseball of mass 0.25 kg is hit at home plate...Ch. 8 - A small block of mass in slides without friction...Ch. 8 - The massless spring of a spring gun has a force...Ch. 8 - A small ball is tied to a string and set rotating...Ch. 8 - A mysterious constant force of 10 N acts...Ch. 8 - A single force F(x)=4.0x (in newtons) acts on a...Ch. 8 - A particle of mass 4.0 kg is constrained to move...Ch. 8 - The force on a particle of mass 2.0 kg varies with...Ch. 8 - A 4.0-kg particle moving along the x -axis is...Ch. 8 - A particle of mass 0.50 kg moves along the x -axis...Ch. 8 - (a) Sketch a graph of the potential energy...Ch. 8 - In the cartoon movie Pocahontas...Ch. 8 - In the reality television show “Amazing Race”...Ch. 8 - In the Back to the Future movies...Ch. 8 - In the Hunger Games movie...Ch. 8 - In a “Top Fail” video...Ch. 8 - In a Coyote/Road Runner cartoon clip...Ch. 8 - In an iconic movie scene, Forrest Gump...Ch. 8 - In the movie Monty Python and the Holy Grail...Ch. 8 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 8 - (a) How high a hill can a car coast up (engines...Ch. 8 - A 5.00105kg subway train is brought to a stop from...Ch. 8 - A pogo stick has a spring with a spring constant...Ch. 8 - A block of mass 500 g is attached to a spring of...Ch. 8 - A block of mass 200 g is attached at the end of a...Ch. 8 - A T-shirt cannon launches a shirt at 5.00 m/s from...Ch. 8 - A child (32 kg) jumps up and down on a trampoline....Ch. 8 - Shown below is a box of mass m1 that sits on a...Ch. 8 - A massless spring with force constant k=200N/m...Ch. 8 - A particle of mass 2.0 kg moves under the...Ch. 8 - Block 2 shown below slides along a frictionless...Ch. 8 - A body of mass m and negligible size starts from...Ch. 8 - A mysterious force acts on all particles along a...Ch. 8 - An object of mass 10 kg is released at point A,...Ch. 8 - Shown below is a small ball of mass m attached to...Ch. 8 - A block leaves a frictionless inclined surface...Ch. 8 - A block of mass m, after sliding down a...Ch. 8 - A block of mass 300 g is attached to a spring of...Ch. 8 - Consider a block of mass 0.200 kg attached to a...Ch. 8 - A skier starts from rest and slides downhill. What...Ch. 8 - Repeat the preceding problem, but this time,...Ch. 8 - Two bodies are interacting by a conservative force...Ch. 8 - In an amusement park, a car rolls in a track as...Ch. 8 - A 200-g steel ball is tied to a 2.00m “massless”...Ch. 8 - A 300 g hockey puck is shot across an ice-covered...Ch. 8 - A projectile of mass 2 kg is fired with a speed of...Ch. 8 - An artillery shell is fired at a target 200 m...Ch. 8 - How much energy is lost to a dissipative drag...Ch. 8 - A box slides on a frictionless surface with a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
A wild-type fruit fly (heterozygous for gray body color and led eyes) is mated Willi a black fruit fly wltli pu...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardAssume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 50 cm and holds it in position with a force of 150 N. If the mass of the arrow is 50 g and the “spring” is massless, what is the speed of the arrow immediately after it leaves the bow?arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forward
- A pendulum, comprising a light string of length L and a small sphere, swings in the vertical plane. The string hits a peg located a distance d below the point of suspension (Fig. P7.80). (a) Show that if the sphere is released from a height below that of the peg, it will return to this height after the string strikes the peg. (b) Show that if the pendulum is released from rest at the horizontal position ( = 90) and is to swing in a complete circle centered on the peg, the minimum value of d must be 3L/5. Figure P7.80arrow_forwardA particle is suspended from a post on top of a can by a light string of length L. as shown in Figure P9.57a. The can and particle are initially moving to the right at constant speed the with the string vertical. The can suddenly comes to rest when it runs into and sticks to a bumper as shown in Figure P9.57b. The suspended panicle swings through an angle . (a) Show that the original speed of the cart can be computed from. vi=2gL(1cos) (b) If the bumper is still exerting a horizontal force on the cart when the hanging panicle is at its maximum angle forward from the vertical. at what moment does the bumper stop exerting a horizontal force?arrow_forwardRank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forward
- A 4.0-kg particle moving along the x -axis is acted upon by the force whose functional form appears below. The velocity of the particle at x = 0 is v = 6.0 m/s. Find the particle’s speed at x=(a)2.0m, 2.0 (b)4.0 m. (c) 10.0m, (d) Does the particle turn around at some point and head back toward the origin? (e) Repeat part (d) if v = 2.0 m/s at x = 0.arrow_forwardWhy is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forward
- Consider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forwardConsider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the spring is fixed, but the right end, at the equilibrium position x=0 , is moving with speed v in the x-direction. What is the total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)arrow_forwardA small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. The coefficient of kinetic friction between the box and the track is 0.35 along the entire track. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d. c. Compare your answer with your answer to Problem 50 if you did that problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY