Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 75AP
(a)
To determine
To show: The block never arrives back at
(b)
To determine
To determine: The maximum value of coefficient of friction that would allow the block to return to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 3 kg block travels along a horizontal surface with a coefficient of kinetic friction of 0.28 at a speed of 7 m/s. After sliding a distance of 1.4 m the block makes a smooth transition to a ramp with a coefficient of kinetic friction of 0.28. How far up the ramp does the block travelled before coming to a momentary stop.
Starting from rest at the top, a child slides down the water slide at a swimming pool and enters the water at a final speed of 4.42 m/s. At what final speed would the child enter the water if the water slide were twice as high? Ignore friction and resistance from the air and the water lubricating the slide.
A 62.0-kg skier is moving at 6.90 m/s on a frictionless, horizontal, snow-covered plateau when she encounters a rough patch 4.30 m long. The coefficient of kinetic friction between this patch and her skis is 0.300. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high. How fast is the skier moving when she gets to the bottom of the hill?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1OQCh. 8 - Two children stand on a platform at the top of a...Ch. 8 - Prob. 3OQCh. 8 - An athlete jumping vertically on a trampoline...Ch. 8 - Prob. 5OQCh. 8 - In a laboratory model of cars skidding to a stop,...
Ch. 8 - Prob. 7OQCh. 8 - Prob. 8OQCh. 8 - Prob. 9OQCh. 8 - One person drops a ball from the top of a building...Ch. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - In the general conservation of energy equation,...Ch. 8 - Prob. 8CQCh. 8 - A block is connected to a spring that is suspended...Ch. 8 - Prob. 10CQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - Prob. 5PCh. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - Prob. 15PCh. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 17PCh. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - Prob. 19PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 25PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - The electric motor of a model train accelerates...Ch. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Prob. 44APCh. 8 - Prob. 45APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Prob. 47APCh. 8 - Why is the following situation impossible? A...Ch. 8 - Prob. 49APCh. 8 - Prob. 50APCh. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 55APCh. 8 - Consider the popgun in Example 8.3. Suppose the...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - Prob. 58APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 60APCh. 8 - Prob. 61APCh. 8 - Prob. 62APCh. 8 - Prob. 63APCh. 8 - Prob. 64APCh. 8 - A block of mass 0.500 kg is pushed against a...Ch. 8 - Prob. 66APCh. 8 - Prob. 67APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 69APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 71APCh. 8 - Prob. 72APCh. 8 - Prob. 73APCh. 8 - Prob. 74APCh. 8 - Prob. 75APCh. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - Prob. 79CPCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 81CPCh. 8 - Prob. 82CPCh. 8 - Prob. 83CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A roaller-coaster cart initially moves with a speed of 8.92 m/s up an incline, without friction. If the mass of the cart is 55.6 kg If the cart coasts up the incline, after what distance will it come to a stop?arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.360 and he exerts a constant horizontal force of 279 N on the crate. A man pushes a crate labeled m, which moves with a velocity vector v to the right, on a horizontal surface. The horizontal surface is textured from the right edge of the crate to a horizontal distance ℓ from the right edge of the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction (b) Find the net work done on the crate while it is on the rough surface. J(c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 288 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction ---Select--- opposite as the motion of the crate same as the motion of the crate (b) Find the net work done on the crate while it is on the rough surface. J(c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forward
- A 19-kg sled is being pulled along the horizontal snow-covered ground by a horizontal force of 29 N. Starting from rest, the sled attains a speed of 2.9 m/s in 9.7 m. Find the coefficient of kinetic friction between the runners of the sled and the snow.arrow_forwardPhysics students do an expriment to determine the coefficient of kinetic friction between a wooden object and the horizontal table it is on. This object has a mass of 1.6 kg. The students push it against a spring, which compresses the spring by 18cm. When released, the spring sends the object moving across the table and it stops 82 cm from where it was released. The spring constant is 200 N/m. Find the obeject-table coefficient of kinetic friction.arrow_forwardA section of track for a roller coaster consists of two circular arcs ABC and CD joined by a straight portion BC. The radius of AB is 27 m and the radius of CD is 72 m. The car and its occupants, of total mass 250 kg, reach point A with practically no velocity and then drop freely along the track. Determine the maximum and minimum values of the normal force exerted by the track on the car as the car travels from A to D . Ignore air resistance and rolling resistance.arrow_forward
- A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.359 and he exerts a constant horizontal force of 286 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. (b) Find the net work done on the crate while it is on the rough surface. (c) Find the speed of the crate when it reaches the end of the rough surface.arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.359 and he exerts a constant horizontal force of 281 N on the crate. ) Find the magnitude and direction of the net force on the crate while it is on the rough surface Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N=? Find the net work done on the crate while it is on the rough surface.J=? Find the speed of the crate when it reaches the end of the rough surface.m/s=?arrow_forwardA man pushing a crate of mass m= 92.0 kg at a speed of v 0.860 m/s encounters a rough horizontal surface of length t=0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 286 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction --Select- (b) Find the net work done on the crate while it is on the rough surface. (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forward
- A 13.0kg stone slides down an icy, essentially frictionless, hill that is shown in the figure. At the top of the hill, the stone is moving at 1.75m/s down the hill. While the hill is frictionless, the stone experiences friction along the level, rough ground (beyond the base of the hill) all the way to a wall. The coefficients of static and kinetic friction are 0.800 and 0.300 respectively. The stone slides along the ground for 9.15m before making contact with a long spring, which has a spring constant of 25.0N/m. (“Long” in this case means that the spring is sufficiently long to stop the stone before it hits the wall.) Will the stone move again after it has been stopped by the spring?arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.880 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.354 and he exerts a constant horizontal force of 297 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction (b) Find the net work done on the crate while it is on the rough surface. J(c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardA 6.26-kg particle is subject to a net force that varies with position as shown in the figure. The particle starts from rest at x = 0. A coordinate plane has a horizontal axis labeled x (m) and a vertical axis labeled Fx (N). There are three line segments. The first segment runs from the origin to (5,3). The second segment runs from (5,3) to (10,3). The third segment runs from (10,3) to (15,0). What is its speed at the following positions? (a) x = 5.00 m = m/s(b) x = 10.0 m = m/s(c) x = 15.0 m = m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning