Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
12th Edition
ISBN: 9781259587399
Author: Eugene Hecht
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 35SP
Sand drops at a rate of 2000 kg/min from the bottom of a stationary hopper onto a belt conveyer moving horizontally at 250 m/min. Determine the force needed to drive the conveyer, neglecting friction. [Hint: How much momentum must be imparted to the sand each second?]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A crate is attached to a winch or pulley that pulls the crate upwards. The crate has a mass of120 kg and the coefficient of static and kinetic friction between the crate and surface is 0.60and 0.50, respectively. The crate starts from rest and the surface is measured 30° from thehorizontal. If the pulley exerts a tension T = 1220 + 200t,a. What is the impulse applied to the crate during the first second of motion?b. After 1 second, what is the velocity of the crate?c. Compute the power transmitted to the winch after the first second.
Two objects are connected by a light string passing over a light, frictionless pulley as shown in the figure below. The object of mass m₁ = 5.40 kg is released from
Ⓡ
(a) Using the isolated system model, determine the speed of the object f mass m₂ = 3.00 kg just as the 5.40-kg object hits the table.
m/s
(b) Find the maximum height above the table to which the 3.00-kg object rises.
m
at a height h= 3.80 m above the table.
A young ice skater with mass 40.0 kg has fallen and is slidingon the frictionless ice of a skating rink with a speed of 20.0 m/s.(a) What is the magnitude of her linear momentum when she has thisspeed? (b) What is her kinetic energy? (c) What constant net horizontalforce must be applied to the skater to bring her to rest in 5.00 s?
Chapter 8 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
Ch. 8 - 21. A ball having a mass of 0.500 kg is thrown at...Ch. 8 - 22. A projectile experiences a force of 2.0 kN for...Ch. 8 - 8.23 [I] Imagine an automobile traveling at a...Ch. 8 - 24. Imagine a space vehicle floating in the void....Ch. 8 - 8.25 [I] A billiard ball moving at a speed ...Ch. 8 - 8.26 [I] A billiard ball moving at a speed ...Ch. 8 - 8.27 [I] Using the results of the previous two...Ch. 8 - 28. Imagine that a 1.20-kg hard-rubber ball...Ch. 8 - 29. Suppose the ball in the previous problem is in...Ch. 8 - 30. A force of 1000 N is applied to a small space...
Ch. 8 - 31. Typically, a tennis ball hit during a serve...Ch. 8 - 32. During a soccer game a ball (of mass 0.425...Ch. 8 - 33. A 40 000-kg freight car is coasting at a speed...Ch. 8 - 34. An empty 15 000-kg coal car is coasting on a...Ch. 8 - 35. Sand drops at a rate of 2000 kg/min from the...Ch. 8 - 36. Two bodies of masses 8 kg and 4 kg move along...Ch. 8 - 37. A 1200-kg gun mounted on wheels shoots an...Ch. 8 - 38. Three masses are placed on the y-axis: 2 kg at...Ch. 8 - 39. Four masses are positioned in the xy-plane as...Ch. 8 - 40. A ball of mass m sits at the coordinate origin...Ch. 8 - 41. A ball of mass m at rest at the coordinate...Ch. 8 - 42. A 2.0-kg block of wood rests on a long...Ch. 8 - 43. A 2.0-kg block of wood rests on a tabletop. A...Ch. 8 - 44. A 6000-kg truck traveling north at 5.0 m/s...Ch. 8 - 45. What average resisting force must act on a...Ch. 8 - 46. A 7.00-g bullet moving horizontally at 200 m/s...Ch. 8 - 47. Two balls of equal mass, moving with speeds of...Ch. 8 - 48. A 90-g ball moving at 100 cm/s collides...Ch. 8 - 8.49 [III] A ball is dropped onto a horizontal...Ch. 8 - 50. Two identical balls undergo a collision at the...Ch. 8 - 8.51 [II] Two identical balls traveling parallel...Ch. 8 - 8.52 [II] (a) What minimum thrust must the engines...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two gliders are set in motion on a horizontal air track. A spring of force constant k is attached to the back end of the second glider. As shown in Figure P8.48, the first glider, of mass m1, moves to the right with speed v1, and the second glider, of mass m2, moves more slowly to the right with speed v2. When m1 collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of v1, v2, m1, m2, and k, find (a) the speed rat maximum compression, (b) the maximum compression xmax, and (c) the velocity of each glider after m1 has lost contact with the spring.arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forwardThree runaway train cars are moving on a frictionless, horizontal track in a railroad yard as shown in Figure P11.73. The first car, with mass m1 = 1.50 103 kg, is moving to the right with speed v1 = 10.0 m /s; the second car, with mass m2 = 2.50 103 kg, is moving to the left with speed v2 = 5.00 m/s, and the third car, with mass m3 = 1.20 103 kg, is moving to the left with speed v3 = 8.00 m /s. The three railroad cars collide at the same instant and couple, forming a train of three cars. a. What is the final velocity of the train cars immediately after the collision? b. Would the answer to part (a) change if the three cars did not collide at the same instant? Explain. FIGURE P11.73arrow_forward
- Describe a system for which momentum is conserved but mechanical energy is not. Now the reverse: Describe a system for which kinetic energy is conserved but momentum is not.arrow_forwardTwo objects are connected by a light string passing over a light, frictionless pulley as shown in Figure P8.7. The object of mass m1 = 5.00 kg is released from rest at a height h = 9.00 m above the table. Using the isolated sys-tem model, (a) determine the speed of the object of mass m2 = 3.00 kg just as the 5.00-kg object hits the table and (b) find the maxi-mum height above the table to which the 3.00-kg object rises.arrow_forwardA block of mass m1 = 4.00 kg initially at rest on top of a frictionless, horizontal table is attached by a lightweight string to a second block of mass m2 = 3.00 kg hanging vertically from the edge of the table and a distance h = 0.450 m above the floor (Fig. P8.77). If the edge of the table is assumed to be frictionless, what is the speed with which the first block leaves the edge of the table?arrow_forward
- Sand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forwardTwo bumper cars at the county fair are sliding toward one another (Fig. P11.54). Initially, bumper car 1 is traveling to the east at 5.62 m/s, and bumper car 2 is traveling 60.0 south of west at 10.00 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. a. If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? b. What is the kinetic energy lost in the collision? c. Compare your answers to part (b) from this and Problem 54. Is one answer larger than the other? Discuss and explain any differences you find.arrow_forwardA massive tractor is rolling down a country road. In a perfectly inelastic collision, a small sports car runs into the machine from behind. (i) Which vehicle experiences a change in momentum of larger magnitude? (a) The car does. (b) The tractor does. (c) Their momentum changes are the same size. (d) It could be either vehicle. (ii) Which vehicle experiences a larger change in kinetic energy? (a) The car does. (b) The tractor does. (c) Their kinetic energy changes are the same size. (d) It could be either vehicle.arrow_forward
- This is a symbolic version of Problem 23. A girl of mass mG is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vGP to the right relative to the plank. (The subscript GP denotes the girl relative to plank.) (a) What is the velocity vPI of the plank relative to the surface of the ice? (b) What is the girls velocity vGI relative to the ice surface?arrow_forwardA hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the momentum at the end of the 1.3-s interval.arrow_forwardThe coefficient of friction between the block of mass ml = 3.00 kg and the surface in Figure P7.22 is k = 0.400. The system starts from rest. What is the speed of the ball of mass, m2 = 5.00 kg when it has fallen a distance h = 1.50 m? Figure P7.22arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY