Electric Circuits. (11th Edition)
11th Edition
ISBN: 9780134746968
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 32P
To determine
Find the expression for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Impedances are in ohms Need Handwritten solution DO NOT USE CHATGPT PLEASE OTHERWISE DOWNVOTE
2.56. The impulse response of a discrete-time LTI system is given by
h[n] = ()u[n]
Let y[n] be the output of the system with the input
Find y[1] and y[4].
Ans. y[1] = 1 and y[4] = 1.
x[n] = 28[n]+8[n-3]
NEED HANDWRITTEN SOLUTION DO NOT USE AI
Chapter 8 Solutions
Electric Circuits. (11th Edition)
Ch. 8.1 - The resistance and inductance of the circuit in...Ch. 8.2 - Use the integral relationship between iL and v to...Ch. 8.2 - Prob. 3APCh. 8.2 - Prob. 4APCh. 8.2 - Prob. 5APCh. 8.3 - Prob. 6APCh. 8.4 - Prob. 7APCh. 8.4 - Prob. 8APCh. 8.4 - Repeat Assessment Problems 8.7 and 8.8 if the 80 Ω...Ch. 8 - The resistance, inductance, and capacitance in a...
Ch. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - The natural response for the circuit shown in Fig....Ch. 8 - The natural voltage response of the circuit in...Ch. 8 - The voltage response for the circuit in Fig. 8.1...Ch. 8 - Prob. 10PCh. 8 - Design a parallel RLC circuit (see Fig. 8.1) using...Ch. 8 - Prob. 12PCh. 8 - The initial value of the voltage υ in the circuit...Ch. 8 - Prob. 14PCh. 8 - The resistor in the circuit of Fig. P8.14 is...Ch. 8 - Prob. 16PCh. 8 - The switch in the circuit of Fig. P8.17 has been...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - The switch in the circuit in Fig. P8.27 has been...Ch. 8 - For the circuit in Fig. P8.27, find υo for t ≥...Ch. 8 - The switch in the circuit in Fig. P8.29 has been...Ch. 8 - There is no energy stored in the circuit in Fig....Ch. 8 - For the circuit in Fig. P8.30, find υo for t ≥...Ch. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Switches 1 and 2 in the circuit in Fig. P8.35 are...Ch. 8 - The switch in the circuit in Fig. P8.36 has been...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - In the circuit in Fig. P8.39, the resistor is...Ch. 8 - The initial energy stored in the 50 nF capacitor...Ch. 8 - Prob. 41PCh. 8 - Find the voltage across the 80 nF capacitor for...Ch. 8 - Design a series RLC circuit (see Fig. 8.3) using...Ch. 8 - Change the resistance for the circuit you designed...Ch. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - The switch in the circuit shown in Fig. P8.48 has...Ch. 8 - Prob. 49PCh. 8 - The initial energy stored in the circuit in Fig....Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The two switches in the circuit seen in Fig. P8.53...Ch. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - The circuit parameters in the circuit of Fig....Ch. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Derive the differential equation that relates the...Ch. 8 - The voltage signal of Fig. P8.63(a) is applied to...Ch. 8 - The circuit in Fig. P8.63 (b) is modified by...Ch. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68P
Knowledge Booster
Similar questions
- Lecture Notes with Tutorials Quesi Introduction Introduction Q Is a Chegg subscription w s.polite.edu.sg/d21/e/enhancedSequenceViewer/560826?url=https%3A%2F%2F5ff0cccf-42fe-41ae-a18f-a4e0f77dec33.sequences.api.brightsp ↑↓ 1 of 4 EDA Assignment 1 (15% ) - + Automatic Zoom 8. Please note you may be asked to explain your solution to any of the questions. Question 1 (25 marks) Use constant-voltage-drop model to analyse the circuit in Figure 1. (a) Re-draw the circuit by replacing each diode with its equivalent circuit. (b) Calculate the values of li, 12, b and Is. (c) Determine the voltage across R1, VR- (5 marks) (15 marks) (5 marks) Si R 3.3kQ ΚΩ ww + VR1 12 15 13 14 Ge + Ge R3 20V Ge Si 12.2ΚΩ R4 R₂ 4.7 ΚΩ 5.1 ΚΩ Ge Figure 1 EPIC Priarrow_forward146 Romania with step costs in km Straight-line distance to Bucharest * Oradea 71, 75, Zerind 151 rad & 140 197 Neamt 87 lasi 92 Arad 366 Bucharest 0 Craiova 160 Dobreta 242 Eforie 161 Fagaras 178 118 Sibiu 99 Fagaras 80 Rimnicu Vilcea Giurgiu 77 Vaslui Hirsova 151 Tasi 226 Lugoj 244 Timisoara 111 Mebadia 241 229 142 211 Neamt 234 Lugoj Pitesti 97 Oradea 380 70 146 101 Mehadia 75 138 9181 yep 98 Pitesti 98 Hirsova 85 Rimnicu Vilcea 193 Urziceni 86 Sibiu 253 Bucharest Timisoara 329 120 Urziceni 80 Dobreta 90 Vaslui 199 Craiova Eforie ☐ Giurgiu Zerind 374 each of the following search strategies include, (a) Initial (Arad) (b) Goal. (c) Search tree (d) Path Taken (e) Path Returned (f) Path Cost (i) A* 1) Greedy Best First Compare Time, Optimality, Complexity and Completeness Section Carrow_forwardcontrol systemarrow_forward
- 2.50. Let y[n] = x[n]* h[n]. Then show that x[nn] h[n-n₂] = y[n-n, -n₂] Hint: See Prob. 2.3. Show that no+N-1 = k=no x[n]x[n] x[k] x[nk] for an arbitrary starting point no. Hint: See Probs. 2.31 and 2.8.arrow_forward"2. In the following circuit R₁ = 2000, RL = 100k, n₁/n2 = 1/100, and vin (t) = 40 cos(wt)V, where w = 1000 rad/s: (a) Find the impedance Z₁. That is, the secondary impedance reflected to the primary. (b) Find the resistance seen by the source. (c) If Ry, is changed to 40k, find the value of n₁/n2 for maximum power transfer to RT. (d) Calculate the voltage in the primary and the secondary, V₂, and V, (where V, = Vout). (e) Calculate the currents I, and I, (primary and secondary)." vs(t) www R₁ 01:02 Z₁l ideal R₁ Voutarrow_forward"3. In the following circuit R₁ = 1500, R₂ = 6000, R₁ = 12k, n₁ n₂ = 1: 10, and Vin (t) = 5√2 cos(wt) V, where w = 2000π rad/s: (a) Find the impedance Z₁. (b) Find the phasor Vout (c) If Ry, is changed to 24k, find the value of n₁: n₂ for maximum power transfer." vs(t) ww R₁ R₂ 01:02 Z₁ ideal R₁> Voutarrow_forward
- 2.48. Show that if y(t) = x(t)* h(t), then y' (t) = x' (1) * h(t) = x(t) * h'(t) Hint: Differentiate Eqs. (2.6) and (2.10) with respect to t. 2.49. Show that x(1) * 8'(t) = x(t) Hint: Use the result from Prob. 2.48 and Eq. (2.58).arrow_forward2.47. Compute the convolution sum y[n] = x[n]+h[n] of the following pairs of sequences: (a) x[n] = u[n], h[n] = 2"u[n] (b) x[n]=u[n]-u[n-N], h[n]=a"u[n], 0 < a <1 (c) x[n]=()"u[n], h[n] = 8[n] - 8[n-1]arrow_forward"4. The load impedance connected to the secondary winding of the ideal transformer in the following circuit consists of a resistance of 237.5m2 in series with an inductor of 125µH. If the sinusoidal voltage source v, is generating the voltage 2500 cos(400t) V, calculate the steady-state equations for: (a) 21. (b) v1. (c) i₂, and (d) v2." 08 0,255 mH 237,5 m2 10:1 01 - Ideal 02 125 pharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,