Physical Science + Connect Access Card
11th Edition
ISBN: 9781259731006
Author: Bill W. Tillery
Publisher: McGraw-Hill College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 2PEB
(a)
To determine
To calculate: The energy of the third energy level of the hydrogen atom in
(b)
To determine
To calculate: The Energy of the third energy level of the hydrogen atom in Joules.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Determine the distance between the electron and proton in an atom if the potential energy UU of the electron is 15.2 eV (electronvolt, 1 eV =1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).
if the energy levels for a hydrogenic atom are given by En=-13.6/n^2eV, the ionization energy of the U91+ ion in its ground state is:
a) 13.6eV
, b) 1,251.2eV,
c) 1,237.6eV,
d) 115,110.4eV,
e) 112,621.6eV
(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 3 state?__________ eV(b) If the electrons gain this energy by collision between hydrogen atoms in a high temperature gas, find the minimum temperature of the heated hydrogen gas. The thermal energy of the heated atoms is given by 3kBT/2, where kB is the Boltzmann constant.__________ K
Chapter 8 Solutions
Physical Science + Connect Access Card
Ch. 8 - Prob. 1ACCh. 8 - Prob. 2ACCh. 8 - Prob. 3ACCh. 8 - 4. Millikan measured the charge on oil droplets...Ch. 8 - Prob. 5ACCh. 8 - Prob. 6ACCh. 8 - Prob. 7ACCh. 8 - Prob. 8ACCh. 8 - Prob. 9ACCh. 8 - Prob. 10AC
Ch. 8 - Prob. 11ACCh. 8 - Prob. 12ACCh. 8 - Prob. 13ACCh. 8 - Prob. 14ACCh. 8 - Prob. 15ACCh. 8 - Prob. 16ACCh. 8 - Prob. 17ACCh. 8 - Prob. 18ACCh. 8 - Prob. 19ACCh. 8 - Prob. 20ACCh. 8 - Prob. 21ACCh. 8 - Prob. 22ACCh. 8 - Prob. 23ACCh. 8 - Prob. 24ACCh. 8 - Prob. 25ACCh. 8 - Prob. 26ACCh. 8 - 27. Elements that have properties of both the...Ch. 8 - Prob. 28ACCh. 8 - Prob. 29ACCh. 8 - Prob. 30ACCh. 8 - Prob. 31ACCh. 8 - Prob. 32ACCh. 8 - Prob. 33ACCh. 8 - Prob. 34ACCh. 8 - Prob. 35ACCh. 8 - Prob. 36ACCh. 8 - Prob. 37ACCh. 8 - Prob. 38ACCh. 8 - Prob. 39ACCh. 8 - Prob. 40ACCh. 8 - Prob. 41ACCh. 8 - Prob. 42ACCh. 8 - Prob. 43ACCh. 8 - Prob. 44ACCh. 8 - Prob. 45ACCh. 8 - Prob. 46ACCh. 8 - Prob. 47ACCh. 8 - Prob. 48ACCh. 8 - Prob. 49ACCh. 8 - Prob. 1QFTCh. 8 - Prob. 2QFTCh. 8 - Prob. 3QFTCh. 8 - Prob. 4QFTCh. 8 - Prob. 5QFTCh. 8 - Prob. 6QFTCh. 8 - Prob. 7QFTCh. 8 - Prob. 8QFTCh. 8 - Prob. 9QFTCh. 8 - Prob. 10QFTCh. 8 - Prob. 11QFTCh. 8 - Prob. 12QFTCh. 8 - Prob. 1FFACh. 8 - Prob. 2FFACh. 8 - Prob. 3FFACh. 8 - Prob. 4FFACh. 8 - Prob. 5FFACh. 8 - Prob. 6FFACh. 8 - Prob. 1PEBCh. 8 - Prob. 2PEBCh. 8 - Prob. 3PEBCh. 8 - Prob. 4PEBCh. 8 - Prob. 5PEBCh. 8 - 6. If the charge-to-mass ratio of a proton is 9.58...Ch. 8 - Prob. 7PEBCh. 8 - 8. Using any reference you wish, write the...Ch. 8 - Prob. 9PEBCh. 8 - 10. Referring to Figure 8.16 only, write the...Ch. 8 - 11. An electric motor draws a current of 11.5 A in...Ch. 8 - Prob. 12PEBCh. 8 - Prob. 13PEBCh. 8 - Prob. 14PEBCh. 8 - Prob. 15PEBCh. 8 - Prob. 16PEBCh. 8 - Prob. 17PEBCh. 8 - Prob. 18PEBCh. 8 - Prob. 19PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 10.1 eV (electronvolt, 1 eV = 1.6 × 10-19 J). Give your answer in Angstrom (1 A = 10-10 m). Answer: Choose... +arrow_forwardIt is found experimentally that 13.6 eV energy is required to separate a hydrogen atom into a proton and an electron. Compute the orbital radius and the velocity of the electron in a hydrogen atom.arrow_forwardCalculate the energy of the electron in the first orbit in a hydrogen atom. Express the answer in electron volt.arrow_forward
- ASAParrow_forwardA 12.5 eV electron beam is used to excite a gaseous hydrogen atom at room temperature. Determine the wavelengths and the corresponding series of the lines emitted.arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- How many revolutions does the electron in the hydrogen atom in the ground state make per second? (h = 6.63x10 Js, mass of clectron = 9.11x101 kg, Bohr radius = 0.053 nm.) A- 6.55x1015 B- 3.28x1015 C- 3.28x10 D- 1.64x105 E- 9.11x105 The ionisation energy of the hydrogen atom is 13.6 eV. If hydrogen atoms in the ground state absorb quanta of encrgy 12.75 eV, how many discrete spectral lines will be emitted as per Bohr's theory? A- 1 В-2 С-4 D- 6 E- zero The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true? A- Its kinetic energy increases and its potential and total energies decrease. B- Its kinetic energy decreases, potential energy increases and its total energy remains the same. C- ts kinetic and total energies decrease and its potential energy increases. D- Its kinetic, potential and total energies decrease. An electron in a Haydrogen atom undergoes a transition from the state n = 4 to n = 2. The energy…arrow_forwardA hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?arrow_forwardWhat are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with n = 3 to a state with n = 1?arrow_forward
- A hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forwardThe total energy of an electron in the first excited state of the hydrogen atom is about –3.4 eV.(a) What is the kinetic energy of the electron in this state?(b) What is the potential energy of the electron in this state?(c) Which of the answers above would change if the choice of the zero of potential energy is changed?arrow_forwardThe hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning