Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 13MCQ
Suppose you are sitting on a rotating stool holding a 2-kg mass in each outstretched hand. If you suddenly drop the masses, your
- increase.
- decrease.
- stay the same.
For assigned homework and other learning materials, go to the MasteringPhysics website.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Physics: Principles with Applications
Ch. 8 - A solid ball and a solid cylinder roll down a...Ch. 8 - A bicycle odometer (which counts revolutions and...Ch. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Why is it more difficult to do a sit-up with your...Ch. 8 - If the net force on a system is zero, is the net...Ch. 8 - Mammals that depend on being able to run fast have...Ch. 8 - This book has three symmetry axes through its...Ch. 8 - Can the mass of a rigid object be considered...Ch. 8 - The moment of inertia of a rotating solid disk...
Ch. 8 - Two inclines have the same height but make...Ch. 8 - Two spheres look identical and have the same mass....Ch. 8 - A sphere and a cylinder have the same radius and...Ch. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - 15. Can the diver of Fig. 8-28 do a somersault...Ch. 8 - When a motorcyclist leaves the ground on a jump...Ch. 8 - Prob. 17QCh. 8 - 18. The angular velocity of a wheel rotating on a...Ch. 8 - 19. In what direction is the Earth's angular...Ch. 8 - 20. ‘On the basis of the law of conservation of...Ch. 8 - Bonnie sits on the outer rim of a merry-go-round,...Ch. 8 - Prob. 2MCQCh. 8 - Prob. 3MCQCh. 8 - Prob. 4MCQCh. 8 - Prob. 5MCQCh. 8 - Prob. 6MCQCh. 8 - Prob. 7MCQCh. 8 - Prob. 8MCQCh. 8 - Prob. 9MCQCh. 8 - Prob. 10MCQCh. 8 - Prob. 11MCQCh. 8 - Prob. 12MCQCh. 8 - Suppose you are sitting on a rotating stool...Ch. 8 - Express the following angles in radians: (a)...Ch. 8 - The Sun subtends an angle of about 0.5° to us on...Ch. 8 - A laser beam is directed at the Moon, 380,000 km...Ch. 8 - The blades in a blender rotate at a rate of 6500...Ch. 8 - 5. (II) The platter of the hard drive of a...Ch. 8 - Prob. 6PCh. 8 - (a) A grinding wheel 0.35 m in diameter rotates at...Ch. 8 - Prob. 8PCh. 8 - Calculate the angular velocity (a) of a clock's...Ch. 8 - Prob. 10PCh. 8 - What is the linear speed, due to the Earth's...Ch. 8 - Prob. 12PCh. 8 - How fast (in rpm) must a centrifuge rotate ifa...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - An automobile engine slows down from 3500 rpm to...Ch. 8 - 18. (I) A centrifuge accelerates uniformly from...Ch. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - A wheel 31 cm in diameter accelerates uniformly...Ch. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 52-kg person riding a bike puts all her weight...Ch. 8 - Calculate the net torque about the axle of the...Ch. 8 - A person exerts a horizontal force of 42 N on the...Ch. 8 - Prob. 27PCh. 8 - The bolts on the cylinder head of an engine...Ch. 8 - Determine the net torque on the 2.0-m-long uniform...Ch. 8 - Determine the moment of inertia of a 10.8-kg...Ch. 8 - 31. (I) Estimate the moment of inertia of a...Ch. 8 - A merry-go-round accelerates from rest to 0.68...Ch. 8 - Prob. 33PCh. 8 - (II) A grinding wheel is a uniform cylinder with a...Ch. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - A centrifuge rotor rotating at 9200 rpm is shut...Ch. 8 - 45. (II) To get a flat, uniform cylindrical...Ch. 8 - 46. (Ill) Two blocks are connected by a light...Ch. 8 - 47 (III) An Atwood machine consists of two masses,...Ch. 8 - A hammer thrower accelerates the hammer (mass...Ch. 8 - 49. (I) An automobile engine develops a torque of...Ch. 8 - A centrifuge rotor has a moment of inertia of 325...Ch. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - What is the angular momentum of a 0.270-kg ball...Ch. 8 - (a) What is the angular momentum of a 2.8-kg...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - A person of mass 75 kg stands at the center of a...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75GPCh. 8 - Prob. 76GPCh. 8 - Prob. 77GPCh. 8 - Prob. 78GPCh. 8 - Prob. 79GPCh. 8 - Prob. 80GPCh. 8 - Prob. 81GPCh. 8 - Figure 8-59 illustrates an H20 molecule The O — H...Ch. 8 - A hollow cylinder (hoop) is rolling on a...Ch. 8 - Prob. 84GPCh. 8 - Prob. 85GPCh. 8 - Prob. 86GPCh. 8 - Prob. 87GPCh. 8 - Prob. 88GPCh. 8 - Prob. 89GPCh. 8 - Prob. 90GPCh. 8 - A large spool of rope rolls on the ground with the...Ch. 8 - The Moon orbits the Earth such that the same side...Ch. 8 - Prob. 93GPCh. 8 - Most of our Solar System's mass is contained in...Ch. 8 - Prob. 95GPCh. 8 - Prob. 96GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One method of pitching a softball is called the wind-mill delivery method, in which the pitchers arm rotates through approximately 360 in a vertical plane before the 198-gram ball is released at the lowest point of the circular motion. An experienced pitcher can throw a ball with a speed of 98.0 mi/h. Assume the angular acceleration is uniform throughout the pitching motion and take the distance between the softball and the shoulder joint to be 74.2 cm. (a) Determine the angular speed of the arm in rev/s at the instant of release, (b) Find the value of the angular acceleration in rev/s2 and the radial and tangential acceleration of the ball just before it is released, (c) Determine the force exerted on the ball by the pitchers hand (both radial and tangential components) just before it is released.arrow_forwardAn ultracentrifuge accelerates from to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in rad/s2 ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal acceleration in m/s2 and multiples of g of this point at full rpm? (d) What is the total distance travelled by a point 9.5 cm from the axis of totation of the ultracentrifuge?arrow_forwardA carnival carousel accelerates nonuniformly from rest, moving through an angle of 8.60 rad in 6.00 s. If its turning at 3.30 rad/s at that time, find (a) its average angular speed, and (b) average angular acceleration during that time interval. (See Section 7.1.)arrow_forward
- During a 6.0-s time interval, a fly-wheel with a constant angular acceleration turns through 500 radians that acquire an angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular acceleration of the fly-wheel?arrow_forwardIntegrated Concepts An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a) What is its angular acceleration in rad/s2? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the radial acceleration in m/s2 and multiples of g of this point at full rpm?arrow_forwardA wheel is rotating about a fixed axis with constant angular acceleration 3 rad/s2. At different moments, its angular speed is 2 rad/s, 0. and +2 rad/s. For a point on the rim of the wheel, consider at these moments the magnitude of the tangential component of acceleration and the magnitude of the radial component of acceleration. Rank the following five items from largest to smallest: (a) |at| when = 2 rad/s, (b)|ar| when = 2 rad/s, (c)|ar| when = 0, (d) |at| when = 2 rad/s, and (e) |ar| when = 2 rad/s. If two items are equal, show them as equal in your ranking. If a quantity is equal to zero, show that fact in your ranking.arrow_forward
- A student rides his bicycle at a constant speed of 3.00 m/s along a straight, level road. If the bikes tires each have a radius of 0.350 m, (a) what is the tires angular speed? (See Section 7.3.) (b) What is the net torque on each tire? (See Section 8.5.)arrow_forwardWhile punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kgm2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip joint?arrow_forward(a) What is the period of rotation of Earth in seconds? (b) What is the angular velocity of Earth? (c) Given that Earth has a radius of 6.4106 m at its equator, what is the linear velocity at Earth's surface?arrow_forward
- A basketball player entertains the crowd by spinning a basketball on his nose. The basketball has a mass of 0.600 kg and a radius of 0.121 m. If the basketball is spinning at a rate of 3.00 revolutions per second, (a) what is its rotational kinetic energy? (See Section 8.6.) (b) What is the magnitude of its angular momentum? Treat the ball as a thin, spherical shell. (See Section 8.7.)arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardOlympic ice skaters are able to spin at about 5 rev/s. (a) What is their angular velocity in radians per second? (b) What is the centripetal acceleration of the skater's nose if it is 0.120 m from the axis of rotation? (c) An exceptional skater named Dick Button was able to spin much faster in the 1950s than anyone since—at about 9 rev/s. What was the centripetal acceleration of the tip of his nose, assuming it is at 0.120 m radius? (d) Comment on the magnitudes of the accelerations found. It is reputed that Button ruptured small blood vessels during his spins.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY