Elementary Differential Equations
Elementary Differential Equations
10th Edition
ISBN: 9780470458327
Author: William E. Boyce, Richard C. DiPrima
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Question
Book Icon
Chapter 7.9, Problem 1P
To determine

The general solution of the equation, x=(2132)x+(ett).

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The general solution of x=(2132)x+(ett) is obtained as, x(t)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)(23etet13et+23et)_.

Explanation of Solution

The given system of equations is,

x=(2132)x+(ett)

It is noted that, the given system is a non-homogeneous system.

Consider the homogeneous part. That is,

x=(2132)x

This is of the form, x=Ax, where A=(2132).

The eigenvalues r and the eigenvectors ξ satisfy the equation, |ArI|ξ=0. That is,

|ArI|ξ=0|2r132r|(ξ1ξ2)=(00)(2r)(2r)+3=0r21=0

The roots of the above characteristic equation is obtained as follows.

r21=0r2=1

Thus, the solutions are, r1=1,r2=1. That is, the solutions are real and different.

Set r1=1 in the coefficient matrix. That is,

(2+1132+1)=(3131)

On solving, (3131)(ξ1ξ2)=(00), the following equation is obtained.

3ξ1ξ2=0

Let ξ1=1, then the above equation becomes, ξ2=3.

Then, the eigen vector formed is, ξ=(13).

Thus, the first solution of the homogeneous solution is, ξ(1)=(13)c2et.

Set r2=1 in the coefficient matrix. That is,

(211321)=(1133)

On solving, (1133)(ξ1ξ2)=(00), the following equation is obtained.

ξ1ξ2=0ξ1=ξ2

Let ξ1=1, then from the above equation, ξ2=1.

Then, the eigen vector formed is, ξ=(11).

Thus, the second solution of the homogeneous solution is, ξ(2)=c1(11)et.

Therefore, the matrix T of eigen vectors is,

T=(ξ(1),ξ(2))=(1131)

Then, the inverse of T is, T1=12(1131).

It is noted from the given equation that, g(t)=(ett).

Now consider the equation, x=Ty. Then, the following equation is obtained.

y=Dy+T1g(t)  (1) where, D=(r100r2)

Substitute the eigen values and inverse of T in the equation (1) as follows.

y=Dy+T1g(t)(y1y2)=(1001)(y1y2)12(1131)(ett)

Thus, the following two linear differential equations are obtained.

y1=y112et+12t    (2)y2=y2+32et12t      (3)

Consider the equation (2). The integral factor is,

μ(t)=ep(t)dt=et

Multiply the obtained integral factor throughout the equation (2) and y1 is obtained as,

y1=c1et14et+12t12      (4)

Similarly, multiply the obtained integral factor et throughout the equation (3) and y2 is obtained as,

y2=32tet+12t+12+c2et     (5)

The solution is given by the equation, x=Ty. That is, x(t)=T(y1y2)       (6).

Substitute the obtained solutions in the equation (6) as follows.

x(t)=(1131)(y1y2)=(1131)(c1et14et+12t1232tet+12t+12+c2et)=(c1et14et+12t12+32tet+12t+12+c2et3(c1et14et+12t12)+32tet+12t+12+c2et)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)

Therefore, the general solution of x=(2132)x+(ett) is obtained as, x(t)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)(23etet13et+23et)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

Elementary Differential Equations

Ch. 7.1 - Prob. 11PCh. 7.1 - Prob. 12PCh. 7.1 - Prob. 13PCh. 7.1 - Prob. 14PCh. 7.1 - Prob. 15PCh. 7.1 - Prob. 16PCh. 7.1 - Prob. 17PCh. 7.1 - Prob. 18PCh. 7.1 - Consider the circuit shown in Figure 7.1.2. Let...Ch. 7.1 - Prob. 20PCh. 7.1 - Prob. 21PCh. 7.1 - Prob. 22PCh. 7.1 - Prob. 23PCh. 7.2 - Prob. 1PCh. 7.2 - Prob. 2PCh. 7.2 - Prob. 3PCh. 7.2 - Prob. 4PCh. 7.2 - Prob. 5PCh. 7.2 - Prob. 6PCh. 7.2 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Prob. 9PCh. 7.2 - Prob. 10PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13PCh. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.2 - Prob. 19PCh. 7.2 - Prob. 20PCh. 7.2 - Prob. 21PCh. 7.2 - Prob. 22PCh. 7.2 - Prob. 23PCh. 7.2 - Prob. 24PCh. 7.2 - Prob. 25PCh. 7.2 - Prob. 26PCh. 7.3 - In each of Problems 1 through 6, either solve the...Ch. 7.3 - In each of Problems 1 through 6, either solve the...Ch. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10PCh. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - Prob. 14PCh. 7.3 - Prob. 15PCh. 7.3 - Prob. 16PCh. 7.3 - Prob. 17PCh. 7.3 - Prob. 18PCh. 7.3 - Prob. 19PCh. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - Prob. 22PCh. 7.3 - Prob. 23PCh. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 27PCh. 7.3 - Prob. 28PCh. 7.3 - Prob. 29PCh. 7.3 - Prob. 31PCh. 7.3 - Prob. 32PCh. 7.3 - Prob. 33PCh. 7.3 - Prob. 34PCh. 7.4 - Prove the generalization of Theorem 7.4.1, as...Ch. 7.4 - Prob. 2PCh. 7.4 - Prob. 3PCh. 7.4 - Prob. 4PCh. 7.4 - Prob. 5PCh. 7.4 - Prob. 6PCh. 7.4 - Prob. 7PCh. 7.4 - Prob. 8PCh. 7.4 - Prob. 9PCh. 7.5 - In each of Problems 1 through 6: Find the general...Ch. 7.5 - Prob. 2PCh. 7.5 - Prob. 3PCh. 7.5 - In each of Problems 1 through 6: Find the general...Ch. 7.5 - Prob. 5PCh. 7.5 - Prob. 6PCh. 7.5 - Prob. 7PCh. 7.5 - Prob. 8PCh. 7.5 - Prob. 9PCh. 7.5 - Prob. 10PCh. 7.5 - Prob. 11PCh. 7.5 - Prob. 12PCh. 7.5 - Prob. 13PCh. 7.5 - In each of Problems 9 through 14, find the general...Ch. 7.5 - Prob. 15PCh. 7.5 - Prob. 16PCh. 7.5 - Prob. 17PCh. 7.5 - Prob. 18PCh. 7.5 - Prob. 19PCh. 7.5 - Prob. 20PCh. 7.5 - Prob. 21PCh. 7.5 - Prob. 22PCh. 7.5 - Prob. 23PCh. 7.5 - Prob. 24PCh. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.5 - Prob. 27PCh. 7.5 - Prob. 28PCh. 7.5 - Prob. 29PCh. 7.5 - Prob. 30PCh. 7.5 - Prob. 31PCh. 7.5 - Prob. 32PCh. 7.5 - Prob. 33PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 2PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 4PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 7PCh. 7.6 - Prob. 8PCh. 7.6 - In each of Problems 9 and 10, find the solution of...Ch. 7.6 - Prob. 10PCh. 7.6 - Prob. 11PCh. 7.6 - Prob. 12PCh. 7.6 - Prob. 13PCh. 7.6 - Prob. 14PCh. 7.6 - Prob. 15PCh. 7.6 - Prob. 16PCh. 7.6 - Prob. 17PCh. 7.6 - Prob. 18PCh. 7.6 - Prob. 19PCh. 7.6 - Prob. 20PCh. 7.6 - Prob. 21PCh. 7.6 - Prob. 22PCh. 7.6 - Prob. 23PCh. 7.6 - Prob. 24PCh. 7.6 - Prob. 25PCh. 7.6 - Prob. 26PCh. 7.6 - Prob. 27PCh. 7.6 - Prob. 28PCh. 7.6 - Prob. 29PCh. 7.7 - In each of Problems 1 through 10: Find a...Ch. 7.7 - Prob. 2PCh. 7.7 - Prob. 3PCh. 7.7 - Prob. 4PCh. 7.7 - Prob. 5PCh. 7.7 - Prob. 6PCh. 7.7 - Prob. 7PCh. 7.7 - Prob. 8PCh. 7.7 - Prob. 9PCh. 7.7 - Prob. 10PCh. 7.7 - Prob. 11PCh. 7.7 - Prob. 12PCh. 7.7 - Prob. 13PCh. 7.7 - Prob. 14PCh. 7.7 - Prob. 15PCh. 7.7 - Prob. 16PCh. 7.7 - Prob. 17PCh. 7.7 - Prob. 18PCh. 7.8 - Prob. 1PCh. 7.8 - Prob. 2PCh. 7.8 - Prob. 3PCh. 7.8 - Prob. 4PCh. 7.8 - Prob. 5PCh. 7.8 - Prob. 6PCh. 7.8 - Prob. 7PCh. 7.8 - Prob. 8PCh. 7.8 - Prob. 9PCh. 7.8 - Prob. 10PCh. 7.8 - Prob. 13PCh. 7.8 - Prob. 14PCh. 7.8 - Prob. 15PCh. 7.8 - Prob. 16PCh. 7.8 - Prob. 17PCh. 7.8 - Prob. 18PCh. 7.8 - Prob. 19PCh. 7.8 - Prob. 20PCh. 7.8 - Prob. 21PCh. 7.8 - Prob. 22PCh. 7.9 - Prob. 1PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 3PCh. 7.9 - Prob. 4PCh. 7.9 - Prob. 5PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 7PCh. 7.9 - Prob. 8PCh. 7.9 - Prob. 9PCh. 7.9 - Prob. 10PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 12PCh. 7.9 - Prob. 13PCh. 7.9 - Prob. 14PCh. 7.9 - Prob. 15PCh. 7.9 - Prob. 16PCh. 7.9 - Prob. 17PCh. 7.9 - Prob. 18P
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY