Concept explainers
a.
To observe what happens when the given function is multiplied by a constant between 0 and 1.
a.
Explanation of Solution
Given:
Calculation:
Let
Now multiply the given function with any value between 0 and 1, say
Calculation for graph:
Consider
Values of x | Values of f (x) |
0 | 1 |
1 | 2 |
-1 | 0.5 |
2 | 4 |
-2 | 0.25 |
From the above table the graph can be plotted.
Calculation for graph:
Consider
Values of x | Values of g (x) |
0 | 0.33 |
1 | 0.67 |
-1 | 0.167 |
2 | 1.33 |
-2 | 0.833 |
From the above table the graph can be plotted.
Plotting both the graphs on the same plane:
Interpretation:
By multiplying the given function with a value between 0 and 1, it is found that the new function becomes the non-rigid transform of the given function which is vertically shrink by a factor of the number multiplied to the given function, which is
b.
To describe the graph as the constant approaches 0
b.
Explanation of Solution
Given:
Calculation:
Let
Now multiply the given function with any value between 0 and 1, say
Calculation for graph:
Consider
Values of x | Values of f (x) |
0 | 1 |
1 | 2 |
-1 | 0.5 |
2 | 4 |
-2 | 0.25 |
From the above table the graph can be plotted.
Calculation for graph:
Consider
Values of x | Values of g (x) |
0 | 0.33 |
1 | 0.67 |
-1 | 0.167 |
2 | 1.33 |
-2 | 0.833 |
From the above table the graph can be plotted.
Plotting both the graphs on the same plane:
Interpretation:
By multiplying the given function with a value between 0 and 1, it is found that the new function becomes the non-rigid transform of the given function which is vertically shrink by a factor of the number multiplied to the given function, which is
So, as the value of the constant multiplied, the function decreases and approach to zero the curve and will tend to become flat and ultimately become flat as the value of constant multiplied tends to 0.
c.
To observe what happens when the given function is multiplied by a constant greater than 1.
c.
Explanation of Solution
Given:
Calculation:
Let
Now multiply the given function with any value greater than 1, say 3.
Calculation for graph:
Consider
Values of x | Values of f (x) |
0 | 1 |
1 | 2 |
-1 | 0.5 |
2 | 4 |
-2 | 0.25 |
From the above table the graph can be plotted.
Calculation for graph:
Consider
Values of x | Values of g (x) |
0 | 3 |
1 | 6 |
-1 | 3 |
2 | 12 |
-2 | 0.75 |
From the above table the graph can be plotted.
Plotting both the graphs on the same plane:
Interpretation:
By multiplying the given function with a value greater than 1, it is found that the new function becomes the non-rigid transform of the given function which is vertically stretched by a factor of the number multiplied to the given function, which is 3 in this case.
d.
To describe the graph as the constant approaches
d.
Explanation of Solution
Given:
Calculation:
Let
Now multiply the given function with any value between 0 and 1, say 3.
Calculation for graph:
Consider
Values of x | Values of f (x) |
0 | 1 |
1 | 2 |
-1 | 0.5 |
2 | 4 |
-2 | 0.25 |
From the above table the graph can be plotted.
Calculation for graph:
Consider
Values of x | Values of g (x) |
0 | 3 |
1 | 6 |
-1 | 3 |
2 | 12 |
-2 | 0.75 |
From the above table the graph can be plotted.
Plotting both the graphs on the same plane:
Interpretation:
By multiplying the given function with a greater value, it is found that the new function becomes the non-rigid transform of the given function which is vertically stretch by a factor of the number multiplied to the given function, which is 3 in this case.
So, as the value of the constant multiplied is increases and approach to
Chapter 7 Solutions
Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
Additional Math Textbook Solutions
College Algebra (7th Edition)
Algebra and Trigonometry (6th Edition)
Calculus: Early Transcendentals (2nd Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
- 3. Let M = (a) - (b) 2 −1 1 -1 2 7 4 -22 Find a basis for Col(M). Find a basis for Null(M).arrow_forwardSchoology X 1. IXL-Write a system of X Project Check #5 | Schx Thomas Edison essay, x Untitled presentation ixl.com/math/algebra-1/write-a-system-of-equations-given-a-graph d.net bookmarks Play Gimkit! - Enter... Imported Imported (1) Thomas Edison Inv... ◄›) What system of equations does the graph show? -8 -6 -4 -2 y 8 LO 6 4 2 -2 -4 -6 -8. 2 4 6 8 Write the equations in slope-intercept form. Simplify any fractions. y = y = = 00 S olo 20arrow_forwardEXERCICE 2: 6.5 points Le plan complexe est rapporté à un repère orthonormé (O, u, v ).Soit [0,[. 1/a. Résoudre dans l'équation (E₁): z2-2z+2 = 0. Ecrire les solutions sous forme exponentielle. I b. En déduire les solutions de l'équation (E2): z6-2 z³ + 2 = 0. 1-2 2/ Résoudre dans C l'équation (E): z² - 2z+1+e2i0 = 0. Ecrire les solutions sous forme exponentielle. 3/ On considère les points A, B et C d'affixes respectives: ZA = 1 + ie 10, zB = 1-ie 10 et zc = 2. a. Déterminer l'ensemble EA décrit par le point A lorsque e varie sur [0, 1. b. Calculer l'affixe du milieu K du segment [AB]. C. Déduire l'ensemble EB décrit par le point B lorsque varie sur [0,¹ [. d. Montrer que OACB est un parallelogramme. e. Donner une mesure de l'angle orienté (OA, OB) puis déterminer pour que OACB soit un carré.arrow_forward
- 2 Use grouping to factor: 10x + 13x + 3 = 0 Identify A B and C in the chart below feach responce inarrow_forward2 Use grouping to factor: 10x² + 13x + 3 = 0 Identify A, B, and C in the chart below. (each rearrow_forward2 Use grouping to factor: 10x + 13x + 3 = 0 Identify A B and C in the chart below feach responce inarrow_forward
- Use grouping to fully factor: x³ + 3x² - 16x - 48 = 0 3 2arrow_forwardName: Tay Jones Level Two Date: Algebra 3 Unit 3: Functions and Equations Practice Assessment Class: #7-OneNote 1. The function f(x) = x² is transformed in the following functions. List the vertex for each function, circle whether the function opens up or down, and why. All three parts must be correct to receive Level 2 points. You can receive points for a, b, and c. a) g(x) = -2(x+5)² Vertex: Opens Up Opens Down Why? ais negative -2 Vertex: b) g(x) = (x + 2)² - 3 c) g(x) = -4(x + 2)² + 2 Opens Up Opens Down Vertex: Opens Up Opens Down Why? 4 Ca is negative) Why? his positive 2. The graph of the function f(x) is shown below. Find the domain, range, and end behavior. Then list the values of x for which the function values are increasing and decreasing. f(x) Domain: End Behavior: As x → ∞o, f(x) -> -6 As x, f(x) -> Range: Where is it Increasing? (002] Where is it Decreasing? (1,00)arrow_forwardShow what to do on the graph visually please!arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education