Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7.13, Problem 106P
To determine
The highest pressure of water that can be pumped.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H.W 5.4
Calculate the load that will make point A move to the left by 6mm, E-228GPa. The diameters
of the rods are as shown in fig. below.
2P-
PA
50mm
B
200mm
2P
0.9m
1.3m
d₁
=
=
Two solid cylindrical road AB and
BC are welded together at B and
loaded as shown. Knowing that
30mm (for AB) and d₂
50mm (for BC), find the average
normal stress in each road and the
total deformation of road AB and
BC. E=220GPa
H.W 5.3
60kN
A
For the previous example calculate the
value of force P so that the point A will not
move, and what is the total length of road
AB at that force?
P◄
A
125kN
125kN
0.9m
125kN
125kN
0.9m
B
B
1.3m
1.3m
Class:
B
Calculate the load that will make point A move to the left by 6mm, E-228GPa
The cross sections of the rods are as shown in fig. below.
183
P-
Solution
1.418mm
200mm
80mm
3P-
18.3
A
080mm
B
200mm
3P-
0.9m
إعدادات العرض
1.3m
4.061mm
Chapter 7 Solutions
Thermodynamics: An Engineering Approach
Ch. 7.13 - Prob. 1PCh. 7.13 - Does the cyclic integral of heat have to be zero...Ch. 7.13 - Is a quantity whose cyclic integral is zero...Ch. 7.13 - Prob. 4PCh. 7.13 - Prob. 5PCh. 7.13 - How do the values of the integral 12Q/T compare...Ch. 7.13 - The entropy of a hot baked potato decreases as it...Ch. 7.13 - When a system is adiabatic, what can be said about...Ch. 7.13 - Prob. 9PCh. 7.13 - A pistoncylinder device contains helium gas....
Ch. 7.13 - A pistoncylinder device contains nitrogen gas....Ch. 7.13 - A pistoncylinder device contains superheated...Ch. 7.13 - The entropy of steam will (increase, decrease,...Ch. 7.13 - Prob. 14PCh. 7.13 - Prob. 15PCh. 7.13 - Prob. 16PCh. 7.13 - Steam is accelerated as it flows through an actual...Ch. 7.13 - Prob. 18PCh. 7.13 - Prob. 19PCh. 7.13 - Prob. 20PCh. 7.13 - Heat in the amount of 100 kJ is transferred...Ch. 7.13 - In Prob. 719, assume that the heat is transferred...Ch. 7.13 - 7–23 A completely reversible heat pump produces...Ch. 7.13 - During the isothermal heat addition process of a...Ch. 7.13 - Prob. 25PCh. 7.13 - During the isothermal heat rejection process of a...Ch. 7.13 - Prob. 27PCh. 7.13 - Prob. 28PCh. 7.13 - Two lbm of water at 300 psia fill a weighted...Ch. 7.13 - A well-insulated rigid tank contains 3 kg of a...Ch. 7.13 - The radiator of a steam heating system has a...Ch. 7.13 - A rigid tank is divided into two equal parts by a...Ch. 7.13 - 7–33 An insulated piston–cylinder device contains...Ch. 7.13 - Prob. 34PCh. 7.13 - Prob. 35PCh. 7.13 - Onekg of R-134a initially at 600 kPa and 25C...Ch. 7.13 - Refrigerant-134a is expanded isentropically from...Ch. 7.13 - Prob. 38PCh. 7.13 - Refrigerant-134a at 320 kPa and 40C undergoes an...Ch. 7.13 - A rigid tank contains 5 kg of saturated vapor...Ch. 7.13 - A 0.5-m3 rigid tank contains refrigerant-134a...Ch. 7.13 - Prob. 44PCh. 7.13 - Prob. 45PCh. 7.13 - Steam enters an adiabatic diffuser at 150 kPa and...Ch. 7.13 - Prob. 47PCh. 7.13 - An isentropic steam turbine processes 2 kg/s of...Ch. 7.13 - Prob. 50PCh. 7.13 -
7–51 0.7-kg of R-134a is expanded isentropically...Ch. 7.13 - Twokg of saturated water vapor at 600 kPa are...Ch. 7.13 - Steam enters a steady-flow adiabatic nozzle with a...Ch. 7.13 - Prob. 54PCh. 7.13 - In Prob. 755, the water is stirred at the same...Ch. 7.13 - A pistoncylinder device contains 5 kg of steam at...Ch. 7.13 - Prob. 57PCh. 7.13 - Prob. 59PCh. 7.13 - A 50-kg copper block initially at 140C is dropped...Ch. 7.13 - Prob. 61PCh. 7.13 - Prob. 62PCh. 7.13 - A 30-kg aluminum block initially at 140C is...Ch. 7.13 - A 30-kg iron block and a 40-kg copper block, both...Ch. 7.13 - An adiabatic pump is to be used to compress...Ch. 7.13 - Prob. 67PCh. 7.13 - Can the entropy of an ideal gas change during an...Ch. 7.13 - An ideal gas undergoes a process between two...Ch. 7.13 - Prob. 72PCh. 7.13 - Prob. 73PCh. 7.13 - Prob. 74PCh. 7.13 - Prob. 75PCh. 7.13 - A 1.5-m3 insulated rigid tank contains 2.7 kg of...Ch. 7.13 - An insulated pistoncylinder device initially...Ch. 7.13 - A pistoncylinder device contains 0.75 kg of...Ch. 7.13 - Prob. 80PCh. 7.13 - 7–81 Air enters a nozzle steadily at 280 kPa and...Ch. 7.13 - A mass of 25 lbm of helium undergoes a process...Ch. 7.13 - One kg of air at 200 kPa and 127C is contained in...Ch. 7.13 - Prob. 85PCh. 7.13 - Air at 3.5 MPa and 500C is expanded in an...Ch. 7.13 -
7–87E Air is compressed in an isentropic...Ch. 7.13 - An insulated rigid tank is divided into two equal...Ch. 7.13 - An insulated rigid tank contains 4 kg of argon gas...Ch. 7.13 - Prob. 90PCh. 7.13 - Prob. 91PCh. 7.13 - Prob. 92PCh. 7.13 - Air at 27C and 100 kPa is contained in a...Ch. 7.13 - Prob. 94PCh. 7.13 - Helium gas is compressed from 90 kPa and 30C to...Ch. 7.13 - Five kg of air at 427C and 600 kPa are contained...Ch. 7.13 - Prob. 97PCh. 7.13 - The well-insulated container shown in Fig. P 795E...Ch. 7.13 - Prob. 99PCh. 7.13 - Prob. 100PCh. 7.13 - It is well known that the power consumed by a...Ch. 7.13 - Prob. 102PCh. 7.13 - Prob. 103PCh. 7.13 - Saturated water vapor at 150C is compressed in a...Ch. 7.13 - Liquid water at 120 kPa enters a 7-kW pump where...Ch. 7.13 - Prob. 106PCh. 7.13 - Consider a steam power plant that operates between...Ch. 7.13 - Helium gas is compressed from 16 psia and 85F to...Ch. 7.13 - Nitrogen gas is compressed from 80 kPa and 27C to...Ch. 7.13 - Saturated refrigerant-134a vapor at 15 psia is...Ch. 7.13 - Describe the ideal process for an (a) adiabatic...Ch. 7.13 - Is the isentropic process a suitable model for...Ch. 7.13 - On a T-s diagram, does the actual exit state...Ch. 7.13 - Steam at 100 psia and 650F is expanded...Ch. 7.13 - Prob. 117PCh. 7.13 - Combustion gases enter an adiabatic gas turbine at...Ch. 7.13 - Steam at 4 MPa and 350C is expanded in an...Ch. 7.13 - Prob. 120PCh. 7.13 - Prob. 122PCh. 7.13 - Prob. 123PCh. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - Prob. 126PCh. 7.13 - Argon gas enters an adiabatic compressor at 14...Ch. 7.13 - Air enters an adiabatic nozzle at 45 psia and 940F...Ch. 7.13 - Prob. 130PCh. 7.13 - An adiabatic diffuser at the inlet of a jet engine...Ch. 7.13 - Hot combustion gases enter the nozzle of a...Ch. 7.13 - Refrigerant-134a is expanded adiabatically from...Ch. 7.13 - Oxygen enters an insulated 12-cm-diameter pipe...Ch. 7.13 - Prob. 135PCh. 7.13 - Prob. 136PCh. 7.13 - Steam enters an adiabatic turbine steadily at 7...Ch. 7.13 - 7–138 In an ice-making plant, water at 0°C is...Ch. 7.13 - Water at 20 psia and 50F enters a mixing chamber...Ch. 7.13 - Prob. 140PCh. 7.13 - Prob. 141PCh. 7.13 - Prob. 142PCh. 7.13 - Prob. 143PCh. 7.13 - In a dairy plant, milk at 4C is pasteurized...Ch. 7.13 - An ordinary egg can be approximated as a...Ch. 7.13 - Prob. 146PCh. 7.13 - Prob. 147PCh. 7.13 - In a production facility, 1.2-in-thick, 2-ft 2-ft...Ch. 7.13 - Prob. 149PCh. 7.13 - Prob. 150PCh. 7.13 - A frictionless pistoncylinder device contains...Ch. 7.13 - Prob. 152PCh. 7.13 - Prob. 153PCh. 7.13 - Prob. 154PCh. 7.13 - Prob. 155PCh. 7.13 - Liquid water at 200 kPa and 15C is heated in a...Ch. 7.13 - Prob. 157PCh. 7.13 - Prob. 158PCh. 7.13 - Prob. 159PCh. 7.13 - Prob. 160PCh. 7.13 - Prob. 161PCh. 7.13 - Prob. 162PCh. 7.13 - Prob. 163PCh. 7.13 - Prob. 164PCh. 7.13 - Prob. 165PCh. 7.13 - The space heating of a facility is accomplished by...Ch. 7.13 - Prob. 167PCh. 7.13 - Prob. 168PCh. 7.13 - Prob. 169RPCh. 7.13 - A refrigerator with a coefficient of performance...Ch. 7.13 - Prob. 171RPCh. 7.13 - Prob. 172RPCh. 7.13 - Prob. 173RPCh. 7.13 - A 100-lbm block of a solid material whose specific...Ch. 7.13 - Prob. 175RPCh. 7.13 - Prob. 176RPCh. 7.13 - A pistoncylinder device initially contains 15 ft3...Ch. 7.13 - Prob. 178RPCh. 7.13 - A 0.8-m3 rigid tank contains carbon dioxide (CO2)...Ch. 7.13 - Helium gas is throttled steadily from 400 kPa and...Ch. 7.13 - Air enters the evaporator section of a window air...Ch. 7.13 - Refrigerant-134a enters a compressor as a...Ch. 7.13 - Prob. 183RPCh. 7.13 - Three kg of helium gas at 100 kPa and 27C are...Ch. 7.13 - Prob. 185RPCh. 7.13 -
7–186 You are to expand a gas adiabatically from...Ch. 7.13 - Prob. 187RPCh. 7.13 - Determine the work input and entropy generation...Ch. 7.13 - Prob. 189RPCh. 7.13 - Prob. 190RPCh. 7.13 - Air enters a two-stage compressor at 100 kPa and...Ch. 7.13 - Steam at 6 MPa and 500C enters a two-stage...Ch. 7.13 - Prob. 193RPCh. 7.13 - Prob. 194RPCh. 7.13 - Prob. 196RPCh. 7.13 - Prob. 197RPCh. 7.13 - 7–198 To control the power output of an isentropic...Ch. 7.13 - Prob. 199RPCh. 7.13 - Prob. 200RPCh. 7.13 - A 5-ft3 rigid tank initially contains...Ch. 7.13 - Prob. 202RPCh. 7.13 - Prob. 203RPCh. 7.13 - Prob. 204RPCh. 7.13 - Prob. 205RPCh. 7.13 - Prob. 206RPCh. 7.13 - Prob. 207RPCh. 7.13 - Prob. 208RPCh. 7.13 - (a) Water flows through a shower head steadily at...Ch. 7.13 - Prob. 211RPCh. 7.13 - Prob. 212RPCh. 7.13 - Prob. 213RPCh. 7.13 - Consider the turbocharger of an internal...Ch. 7.13 - Prob. 215RPCh. 7.13 - Prob. 216RPCh. 7.13 - Prob. 217RPCh. 7.13 - Consider two bodies of identical mass m and...Ch. 7.13 - Prob. 220RPCh. 7.13 - Prob. 222RPCh. 7.13 - Prob. 224RPCh. 7.13 - The polytropic or small stage efficiency of a...Ch. 7.13 - Steam is compressed from 6 MPa and 300C to 10 MPa...Ch. 7.13 - An apple with a mass of 0.12 kg and average...Ch. 7.13 - A pistoncylinder device contains 5 kg of saturated...Ch. 7.13 - Prob. 229FEPCh. 7.13 - Prob. 230FEPCh. 7.13 - A unit mass of a substance undergoes an...Ch. 7.13 - A unit mass of an ideal gas at temperature T...Ch. 7.13 - Prob. 233FEPCh. 7.13 - Prob. 234FEPCh. 7.13 - Air is compressed steadily and adiabatically from...Ch. 7.13 - Argon gas expands in an adiabatic turbine steadily...Ch. 7.13 - Water enters a pump steadily at 100 kPa at a rate...Ch. 7.13 - Air is to be compressed steadily and...Ch. 7.13 - Helium gas enters an adiabatic nozzle steadily at...Ch. 7.13 - Combustion gases with a specific heat ratio of 1.3...Ch. 7.13 - Steam enters an adiabatic turbine steadily at 400C...Ch. 7.13 - Liquid water enters an adiabatic piping system at...Ch. 7.13 - Prob. 243FEPCh. 7.13 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 7.13 - Helium gas is compressed steadily from 90 kPa and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- H.W6 Determine the largest weight W that can be supported by two wires shown in Fig. P109. The stress in either wire is not to exceed 30 ksi. The cross- sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively. 50° 30° Warrow_forwardFind equation of motion and natural frequency for the system shown in fig. by energy method. H.W2// For the system Fig below find 1-F.B.D 2-Eq.of motion 8wn 4-0 (5) m. Jo marrow_forward2. Read the following Vernier caliper measurements. (The scales have been enlarged for easier reading.) The Vernier caliper is calibrated in metric units. (a) 0 1 2 3 4 5 سلسلسله (b) 1 2 3 4 5 6 سلسل (c) 1 23456 (d) 1 2 3 4 5 6 سلسلسarrow_forward
- Explain why on the interval 0<x<1000 mm and 1000<x<2000mm, Mt is equal to positive 160 Nm, but at x= 0mm and x=1000mm Mt is equal to -160 Nm (negative value!). What is the reason for the sign change of Mt?arrow_forward20 3. 2-233 2520 Тр Gears 1079 A pair of helical gears consist of a 20 teeth pinion meshing with a 100 teeth gear. The pinion rotates at Ta 720 r.p.m. The normal pressure angle is 20° while the helix angle is 25°. The face width is 40 mm and the normal module is 4 mm. The pinion as well as gear are made of steel having ultimate strength of 600 MPa and heat treated to a surface hardness of 300 B.H.N. The service factor and factor of safety are 1.5 and 2 respectively. Assume that the velocity factor accounts for the dynamic load and calculate the power transmitting capacity of the gears. [Ans. 8.6 kWarrow_forward4. A single stage helical gear reducer is to receive power from a 1440 r.p.m., 25 kW induction motor. The gear tooth profile is involute full depth with 20° normal pressure angle. The helix angle is 23°, number of teeth on pinion is 20 and the gear ratio is 3. Both the gears are made of steel with allowable beam stress of 90 MPa and hardness 250 B.H.N. (a) Design the gears for 20% overload carrying capacity from standpoint of bending strength and wear, (b) If the incremental dynamic load of 8 kN is estimated in tangential plane, what will be the safe power transmitted by the pair at the same speed?arrow_forward
- Determine the stress in each section of the bar shown in Fig. when subjected to an axial tensile load shown in Fig. The central section is 30 mm hollow square cross- section; the other portions are of circular section, their diameters being indicated What will be the total deformation of the bar? For the bar material E = 210GPa. 20mi О 30mm 30mmm 2.6 15mm 30kN 1 2 10kN - 20kN 3 -329 91mm 100mm 371mmarrow_forwardCalculate the load that will make point A move to the left by 6mm, E=228GPa. The diameters of the rods are as shown in fig. below. 2P- PA 80mm B 200mm 2P 0.9m 1.3m.arrow_forwardIf the rods are made from a square section with the dimension as shown. Calculate the load that will make point A move to the left by 6mm, E=228GPa. 2P- P A 80mm B 200mm 2P 0.9m 1.3marrow_forward
- 3. 9. 10. The centrifugal tension in belts (a) increases power transmitted (b) decreases power transmitted (c) have no effect on the power transmitted (d) increases power transmitted upto a certain speed and then decreases When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this tension is equal to the (a) tension in the tight side of the belt (b) tension in the slack side of the belt (c) sum of the tensions in the tight side and slack side of the belt (d) average tension of the tight side and slack side of the belt The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (d) is given by 60° (a) p=d sin (c) p=d sin (120° T where T Number of teeth on the sprocket. 90° (b) p=d sin T 180° (d) p=d sin Tarrow_forwardOBJECTIVE TYPE QUESTIONS 1. The maximum fluctuation of energy is the 2. (a) sum of maximum and minimum energies (b) difference between the maximum and minimum energies (c) ratio of the maximum energy and minimum energy (d) ratio of the mean resisting torque to the work done per cycle In a turning moment diagram, the variations of energy above and below the mean resisting torque line is called (a) fluctuation of energy (b) maximum fluctuation of energy (c) coefficient of fluctuation of energy (d) none of the above Chapter 16: Turning Moment Diagrams and Flywheel 611 The ratio of the maximum fluctuation of speed to the mean speed is called 3. (a) fluctuation of speed (c) coefficient of fluctuation of speed 4. (b) maximum fluctuation of speed (a) none of these The ratio of the maximum fluctuation of energy to the.......... is called coefficient of fluctuation of energy. (a) minimum fluctuation of energy (b) work done per cycle The maximum fluctuation of energy in a flywheel is equal to 5.…arrow_forwardOBJECTIVE TYPE QUESTIONS 1. The velocity ratio of two pulleys connected by an open belt or crossed belt is 2. (a) directly proportional to their diameters (b) inversely proportional to their diameters (c) directly proportional to the square of their diameters (d) inversely proportional to the square of their diameters Two pulleys of diameters d, and d, and at distance x apart are connected by means of an open belt drive. The length of the belt is (a)(d+d₁)+2x+ (d₁+d₂)² 4x (b)(d₁-d₂)+2x+ (d₁-d₂)² 4x (c)(d₁+d₂)+ +2x+ (d₁-d₂)² 4x (d)(d-d₂)+2x+ (d₁ +d₂)² 4x 3. In a cone pulley, if the sum of radii of the pulleys on the driving and driven shafts is constant, then (a) open belt drive is recommended (b) cross belt drive is recommended (c) both open belt drive and cross belt drive are recommended (d) the drive is recommended depending upon the torque transmitted Due to slip of the belt, the velocity ratio of the belt drive 4. (a) decreases 5. (b) increases (c) does not change When two pulleys…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license