Package: Loose Leaf For Fluid Mechanics With 1 Semester Connect Access Card
8th Edition
ISBN: 9781259638848
Author: White
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.18P
Air at 20°C and 1 atm flows at 5 m/s past a flat plate. At x = 60 cm and y = 2.95 mm, use the Blasius solution, Table 7.1, to find (a) the velocity u; and (b) the wall shear stress. (c) For extra credit, find a Blasius formula for the shear stress away from the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How do the compressible pipe flow formulas behave forsmall pressure drops? Let air at 20°C enter a tube of diameter1 cm and length 3 m. If f = 0.028 with p1 = 102 kPaand p2 = 100 kPa, estimate the mass flow in kg/h for(a) isothermal flow, (b) adiabatic flow, and (c) incompressibleflow at the entrance density.
A solid finite body having the shape of HALF BODY moves in windless air with a velocity, V=2,3 m/s as is shown in the figure. The magnitude of atmospheric pressure
far upstream the body is 96 kPa and atmospheric temperature is 23 °C. The maximum total width of the body is B=0,4 m. In reference to potential flow theory (For air
R=0.287 kJ/kgk and T(K)=T(°C)+273.15):
a) What is the magnitude of the source strength used for description of half body (in m2/s)? (Please use 2 decimal digits in your answer)
Yanıt:
b) What is the magnitude of stagnation pressure in terms of gage (in Pa)? (Please use 2 decimal digits in your answer)
Yanıt:
c) What is the total width of the body at angle 90° (in m)? (Please use 2 decimal digits in your answer)
Yanıt:
A fuel tank in wing has dimensions in Fig. 1, where the width is equal to the height and the tank is half full.
The aircraft undergoes lateral acceleration due to non-zero sideslip, but level flight with level wings. The
aircraft is flying at an altitude of 20000ft in ISA+0. The velocity of the aircraft is V=160m/s, with a radius of
5000m. The tanks vents to a port that is 250Pa above the freestream static pressure. The fuel has a specific
gravity of 0.825.
Use g=9.80665m/s².
Calculate the absolute pressure at point A.
h
W
Lateral direction
Point A
1₁
Figure 1. Fuel tank undergoing lateral acceleration
Chapter 7 Solutions
Package: Loose Leaf For Fluid Mechanics With 1 Semester Connect Access Card
Ch. 7 - Prob. 7.1PCh. 7 - A gas at 20°C and 1 atm flows at 6 ft/s past a...Ch. 7 - Prob. 7.3PCh. 7 - Prob. 7.4PCh. 7 - SAE 30 oil at 20°C flows at 1.8 ft3/s from a...Ch. 7 - Prob. 7.6PCh. 7 - P7.7 Air at 20°C and 1 atm enters a 40-cm-square...Ch. 7 - P7.8 Air, p = 1.2 kg/m3 and E-5 kg/(m .s), flows...Ch. 7 - P7.9 Repeat the flat-plate momentum analysis of...Ch. 7 - Repeat Prob. P7.9, using a trigonometric profile...
Ch. 7 - Prob. 7.11PCh. 7 - Prob. 7.12PCh. 7 - Prob. 7.13PCh. 7 - Prob. 7.14PCh. 7 - Prob. 7.15PCh. 7 - A thin flat plate 55 by 110 cm is immersed in a...Ch. 7 - Consider laminar flow past a sharp flat plate of...Ch. 7 - Air at 20°C and 1 atm flows at 5 m/s past a flat...Ch. 7 - Prob. 7.19PCh. 7 - Air at 20°C and I atm flows at 20 m/s past the...Ch. 7 - Prob. 7.21PCh. 7 - Prob. 7.22PCh. 7 - Prob. 7.23PCh. 7 - Prob. 7.24PCh. 7 - Prob. 7.25PCh. 7 - P7.26 Consider laminar boundary layer flow past...Ch. 7 - Prob. 7.27PCh. 7 - Prob. 7.28PCh. 7 - Prob. 7.29PCh. 7 - Prob. 7.30PCh. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - Prob. 7.38PCh. 7 - P7.39 A hydrofoil 50 cm long and 4 m wide moves...Ch. 7 - Prob. 7.40PCh. 7 - Prob. 7.41PCh. 7 - Prob. 7.42PCh. 7 - Prob. 7.43PCh. 7 - Prob. 7.44PCh. 7 - P7.45 A thin sheet of fiberboard weighs 90 N and...Ch. 7 - Prob. 7.46PCh. 7 - Prob. 7.47PCh. 7 - Prob. 7.48PCh. 7 - Based strictly on your understanding of flat-plate...Ch. 7 - Prob. 7.50PCh. 7 - Prob. 7.51PCh. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - *P7.54 If a missile takes off vertically from sea...Ch. 7 - Prob. 7.55PCh. 7 - Prob. 7.56PCh. 7 - Prob. 7.57PCh. 7 - Prob. 7.58PCh. 7 - Prob. 7.59PCh. 7 - Prob. 7.60PCh. 7 - Prob. 7.61PCh. 7 - A sea-level smokestack is 52 m high and has a...Ch. 7 - For those who think electric cars are sissy, Keio...Ch. 7 - Prob. 7.64PCh. 7 - Prob. 7.65PCh. 7 - Prob. 7.66PCh. 7 - The Toyota Prius has a drag coefficient of 0.25, a...Ch. 7 - Prob. 7.68PCh. 7 - Prob. 7.69PCh. 7 - P7.70 The Army’s new ATPS personnel parachute is...Ch. 7 - Prob. 7.71PCh. 7 - Prob. 7.72PCh. 7 - Prob. 7.73PCh. 7 - Prob. 7.74PCh. 7 - Prob. 7.75PCh. 7 - P7.76 The movie The World’s Fastest Indian tells...Ch. 7 - Prob. 7.77PCh. 7 - Prob. 7.78PCh. 7 - Prob. 7.79PCh. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Prob. 7.82PCh. 7 - Prob. 7.83PCh. 7 - P7.84 A Ping-Pong ball weighs 2.6 g and has a...Ch. 7 - Prob. 7.85PCh. 7 - Prob. 7.86PCh. 7 - P7.87 A tractor-trailer truck has a drag area CA =...Ch. 7 - P7.88 A pickup truck has a clean drag area CDA of...Ch. 7 - Prob. 7.89PCh. 7 - Prob. 7.90PCh. 7 - Prob. 7.91PCh. 7 - Prob. 7.92PCh. 7 - A hot-film probe is mounted on a cone-and-rod...Ch. 7 - Baseball drag data from the University of Texas...Ch. 7 - Prob. 7.95PCh. 7 - Prob. 7.96PCh. 7 - Prob. 7.97PCh. 7 - A buoyant ball of specific gravity SG 1 dropped...Ch. 7 - Prob. 7.99PCh. 7 - Prob. 7.100PCh. 7 - Prob. 7.101PCh. 7 - Prob. 7.102PCh. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Prob. 7.106PCh. 7 - Prob. 7.107PCh. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.110PCh. 7 - Prob. 7.111PCh. 7 - Prob. 7.112PCh. 7 - Prob. 7.113PCh. 7 - Prob. 7.114PCh. 7 - Prob. 7.115PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Suppose that the airplane of Prob. P7.116 is...Ch. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Prob. 7.121PCh. 7 - Prob. 7.122PCh. 7 - Prob. 7.123PCh. 7 - Prob. 7.124PCh. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Prob. 7.127PCh. 7 - Prob. 7.1WPCh. 7 - Prob. 7.2WPCh. 7 - Prob. 7.3WPCh. 7 - Prob. 7.4WPCh. 7 - Prob. 7.5WPCh. 7 - Prob. 7.6WPCh. 7 - Prob. 7.7WPCh. 7 - Prob. 7.8WPCh. 7 - Prob. 7.9WPCh. 7 - How does the concept of drafting, in automobile...Ch. 7 - Prob. 7.11WPCh. 7 - Prob. 7.12WPCh. 7 - Prob. 7.1FEEPCh. 7 - Prob. 7.2FEEPCh. 7 - Prob. 7.3FEEPCh. 7 - Prob. 7.4FEEPCh. 7 - Prob. 7.5FEEPCh. 7 - Prob. 7.6FEEPCh. 7 - Prob. 7.7FEEPCh. 7 - Prob. 7.8FEEPCh. 7 - Prob. 7.9FEEPCh. 7 - Prob. 7.10FEEPCh. 7 - Prob. 7.1CPCh. 7 - Prob. 7.2CPCh. 7 - Prob. 7.3CPCh. 7 - Prob. 7.4CPCh. 7 - Prob. 7.5CPCh. 7 - It is desired to design a cup anemometer for wind...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The bottom of a river has a 4-m-high bump that approximates a Rankine half-body, as in Fig. The pressure at point B on the bottom is 130 kPa, and the river velocity is 2.5 m/s. Use inviscid theory to estimate the water pressure at point A on the bump, which is 2 m above point B.arrow_forwardAir enters a converging/diverging nozzle (diameters : 4mm , 2 mm 8 mm) at 1400 kpa and 200 C. the ratio of specific heats for air , k, is equal to 1.4. specific heat at constant pressure is equal to 1.03 kJ/kg·K; gas constant is 0.287 kPa·m3/ kg·K. mass flow rate is 2.5 kg/s. Find the location in meter that Mach number would equal to 2? Please explain and Show work Again Unit for answer is in meter (m)arrow_forwardAssume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23 kg/m3 (0.002377 slug/ft3) and 1.01 × 105 N/m2 (2116 lb/ft2), respectively. Consider the nonlifting flow over a circular cylinder of a given radius,where V∞ = 20 ft/s. If V∞ is doubled, that is, V∞ = 40 ft/s, does theshape of the streamlines change? Explain.arrow_forward
- A liquid with µ = 1.5x10-3 kgf.s / m2 flows over a horizontal wall. Calculate velocity gradient and shear stress at the limits and points located at 1, 2, 3 cm from its surface. Suppose a destruction of parabolic speed. THE parabola has its apex at point A and the origin of the axis system is at B.arrow_forwardAir flows at high speed through a Herschel venturi monitored by a mercury manometer, as shown in Fig. The upstream conditions are 150 kPa and 80°C. If h = 37 cm, estimate the mass flow in kg/s.arrow_forwardTwo immiscible liquids of equal thickness h are beingsheared between a fixed and a moving plate, as in Fig. .Gravity is neglected, and there is no variation with x . Findan expression for ( a ) the velocity at the interface and ( b ) theshear stress in each fluid. Assume steady laminar flow.arrow_forward
- If a vertical wall at temperature T, is surrounded by a fluid at temperature T, a natural convection boundary layer flow will form. For laminar flow, the momentum equation is au ди. p(u-+ v) = PB(T – T)g + µ- ди ay to be solved, along with continuity and energy, for (u, v, T) with appropriate boundary conditions. The quantity B is the thermal expansion coefficient of the fluid. Use p, g, L, and (Tw- To) to nondimensionalize this equation. Note that there is no “stream" velocity in this type of flow.arrow_forwardThe SR-71 Blackbird, which is 107 feet 5 inches long, is the world’s fastest airplane. It can fly at three times the speed of sound (Mach 3) at altitudes of 80,000f t. When it lands after a long flight it is too hot to be touched for about 30 minutes, and is 6.0 inches longer than at takeoff. How hot is the Blackbird when it lands, assuming its coefficient of linear expansion is 2.4 × 10−5K−1 and its temperature at takeoff is 23oC?arrow_forwardDownstream of a normal shock wave, in airflow, the conditionsare T2 = 603 K, V2= 222 m/s, and p2 = 900 kPa.Estimate the following conditions just upstream of theshock: (a) Ma1; (b) T1; (c) p1; (d ) po1; and (e) To1.arrow_forward
- Air at 20⁰c and 1 ATM flows over a flat plate, v= 35 m/s. The plate is 75 cm long and guarded at 60⁰c. Suppose the depth of one Units on Z, count the transfer of Calor from that plate.arrow_forwardThe actual car will be running at V= 35 km/h at p-1 atm and T=0°C (the air density and viscosity are 1.292 kg/m3, and 1.338 x 105 m2/s, respectively). A one-fifth scale car model is being tested at the wind tunnel at 198.3 km/h at 1 atm and 20°C. (The air density and viscosity are 1.204 kg/m³, and 1.516 x 10$ m²/s, respectively). The average drag force on the model is 50 N. What is the drag force on the prototype? Note that dimensionless drag is Cp 1/2pV² A O 41.8 N O 50 N O 15.0 N O 44.2 N O 8.4 N O 38.9 Narrow_forwardQuestionNo.3 An approximated velocity profile for a laminar boundary layer is given as u(y) × Usin| 28 where U is the stream velocity far from the wall and 8 is the boundary layer thickness, as shown in Fig 2. If the fluid is helium (µ = 1.94 × 10-5N.s/m²) at 20°C and 1 atm, and if U = 10.8 m/s and ô= 3 cm, %3D use the formula to (a) Estimate the wall shear stress Tw in N/m2, and (b) Find the position in the boundary layer where t is one-half of Tw 2/2 U y = 8 u(y) Figure 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license