Power System Analysis and Design (MindTap Course List)
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.14P

Equipment ratings for the five-bus power system shown in Figure 7.15 are as follows:

Generator G1:     50 MVA, 12kV,  X " = 0.2 per unit

Generator G2: 100 MVA, 15 kV, X " = 0.2 per unit

Transformer T1: 50 MVA, 10 kV Y / 138 kV Y, X = 0.10 per unit

Transformer T2: 100 MVA, 15 kV Δ / 138 kV Y, X = 0.10 per unit

Each 138-kV line: X 1 = 40 Ω

A three-phase short circuit occurs at bus 5, where the prefault voltage is 15 kV. Prefault load current is neglected. (a) Draw the positive-sequence reactance diagram in unit on a 100-MVA, 15-kV base in the zone of generator G2. Determine (b) the ThĂ©venin equivalent at the fault, (c) the subtransient fault current in per unit and in kA rms, and (d) contributions to the fault from generator G2 and from transformer T2. Chapter 7, Problem 7.14P, Equipment ratings for the five-bus power system shown in Figure 7.15 are as follows: Generator G1:Â

Blurred answer
Students have asked these similar questions
Three zones of a single-phase circuit are identified in the figure. The zones are connected by transformers T₁ and T2, whose ratings are also shown. Using base values of 100 kVA and 240 volts in zone 1, draw the per-unit circuit and determine the per-unit impedances and the per-unit source voltage. Then calculate the load current both in per-unit and in amperes. Transformer winding resistances and shunt admittance branches are neglected. Zone 1 Zone 2 Vs = 220/0° volts 3---38 T, 30 KVA 240/480 volts M 0.10 p.u. Xoa Xune = 2 fl T T₂ 20 kVA 460/115 volts Xeg = 0.10 p.u. Zone 3 ww Zload = 0.9 - 10.20
Three zones of a single-phase circuit are identified shown in Figure below. The zones are connected by transformers T1 and T2, whose ratings are also shown. Using base values of 33 kVA and 232 volts in zone 1, Find: 1- Draw the per-unit circuit including the per-unit impedances and the per-unit source voltage. 2- Calculate the load current both in per-unit and in amperes (actual or original value). Vs Zone 1 232.940° Vs G. 38 T₁ 30 KVA 240/480 volts Xeq = 0.10 p.u. Zone 2 Xiine = 4 Ω T₂ 20 KVA 460/115 volts Zload = Xea = 0.10 p.u. Zone 3 u 1+j2.2 Ω 2
Q2. The single-line diagram of a simple three-bus power system is shown in Figure-2. Each generator is represented by an emf behind the sub-transient reactance. All impedances are expressed in per unit on a common MVA base. All resistances and shunt capacitances are neglected. The generators are operating on no load at their rated voltage with their emfs in phase. A three-phase fault occurs at bus 3 through a fault impedance of Zf = j0.19 per unit. (i) Using Th'evenin's theorem, obtain the impedance to the point of fault and the fault current in (ii) Determine the bus voltages per unit. ) j0.05 j0.075 j0.75 2 j0.30 j0.45 Figure-2: Single line diagram of the power system network for Q2 3
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Fault Analysis in Power Systems part 1a; Author: GeneralPAC: Power System Tutorials;https://www.youtube.com/watch?v=g8itg4MOjok;License: Standard youtube license