College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 4CQ
If you are using a wrench to loosen a very stubborn nut, you can make the job easier by using a “cheater pipe.” This is a piece of pipe that slides over the handle of the wrench, as shown in Figure Q7.4, making it effectively much longer. Explain why this would help you loosen the nut.
Figure Q7.4
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The chewing muscle,
the masseter, is one of the stron-
gest in the human body. It is
attached to the mandible (lower
jawbone) as shown in Figure P8.33a. The jawbone is pivoted
about a socket just in front of the auditory canal. The forces
acting on the jawbone are equivalent to those acting on the
curved bar in Figure P8.33b. F. is the force exerted by the
food being chewed against the jawbone, T is the force of ten-
sion in the masseter, and R is the force exerted by the socket
on the mandible. Find T and R for a person who bites down
on a piece of steak with a force of 50.0 N.
3.50 cm
– 7.50 cm
Masseter
Mandible
Б
a
Figure P8.33
Q5
+,
F.
You use a wrench to turn a rusty nut. You place your hand at where the black dot is and apply a
force F = 110N at an angle 0 = 59 degrees. The distance from your hand to the center of nut d
= 30 cm. Calculate the torque in N. m your hand applies.
%3D
%3D
%3D
p.
0.
MacBook Pro
G Search or type URL
Chapter 7 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A student gives a steady push to a ball at the end...
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Prob. 13CQCh. 7 - Prob. 15CQCh. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - Prob. 17CQCh. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Prob. 20MCQCh. 7 - Prob. 21MCQCh. 7 - Prob. 22MCQCh. 7 - Prob. 23MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 26MCQCh. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - Prob. 6PCh. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - Prob. 14PCh. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - Prob. 16PCh. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Prob. 35PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Prob. 40PCh. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - Prob. 42PCh. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - Prob. 44PCh. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - Prob. 46PCh. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - Prob. 48PCh. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - Prob. 50PCh. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - Prob. 52PCh. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - Prob. 54PCh. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - Prob. 56PCh. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61GPCh. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - Prob. 68GPCh. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Prob. 70GPCh. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - Prob. 76GPCh. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 81MSPPCh. 7 - Prob. 82MSPPCh. 7 - Prob. 83MSPPCh. 7 - Prob. 84MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q21.6 BIO Estimate how many electrons there are in your body. Make any assumptions you feel are necessary, but ...
University Physics with Modern Physics (14th Edition)
Write each number in decimal form.
33. 1.4 × 100
Applied Physics (11th Edition)
25. FIGURE EX4.25 shows the angular-velocity-versus-time graph for a particle moving in a circle, starting from...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
73. If you scuff electrons from your shoes while walking across a silk rug, are you negatively or positively ch...
Conceptual Physical Science (6th Edition)
A wheels diameter is 92 cm, and its rotational inertia is 7.8 kg m2. (a) Whats the minimum mass it could have?...
Essential University Physics: Volume 1 (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the magnitude of torque that would need to be applied to stop the motion of a 10-kg ball being swung at the end of a 10 m rope at 5 rad/s (i.e, angular momentum changes to 0) in 4 seconds? Select one: O a. 2500 Nm O b. 125 Nm O c. 250 Nm O d. 1250 Nm O e. 200 Nmarrow_forwardpls help my head hurtarrow_forwardUnderstanding the details of timing and forces in motion can improve the performance of athletes, including dancers. Consider the forces involved in a ballet jump called a sauté demi plié. P9.84a shows the sequence of moves in the jump. The dancer starts upright, then quickly bends her knees, moving downward. After she reaches the bottom of this dip, she extends her legs, pushing herself upward. After this upward push, she leaves the ground, beginning a short period of time in the air. P9.84b is a slightly idealized graph of the net force on a 42 kg dancer executing this move. The sauté demi plié begins with a phase in which the net force on the dancer is negative. During this phase of the jump,A. The normal force of the floor on her is zero.B. The normal force of the floor on her is less than her weight but greater than zero.C. The normal force of the floor on her is equal to her weight.D. The normal force of the floor on her is greater than her weight.arrow_forward
- Understanding the details of timing and forces in motion can improve the performance of athletes, including dancers. Consider the forces involved in a ballet jump called a sauté demi plié. P9.84a shows the sequence of moves in the jump. The dancer starts upright, then quickly bends her knees, moving downward. After she reaches the bottom of this dip, she extends her legs, pushing herself upward. After this upward push, she leaves the ground, beginning a short period of time in the air. P9.84b is a slightly idealized graph of the net force on a 42 kg dancer executing this move. To the nearest m/s, how fast is the dancer moving when she leaves the floor?A. 1 m/s B. 2 m/s C. 3 m/s D. 4 m/sarrow_forwardUnderstanding the details of timing and forces in motion can improve the performance of athletes, including dancers. Consider the forces involved in a ballet jump called a sauté demi plié. P9.84a shows the sequence of moves in the jump. The dancer starts upright, then quickly bends her knees, moving downward. After she reaches the bottom of this dip, she extends her legs, pushing herself upward. After this upward push, she leaves the ground, beginning a short period of time in the air. P9.84b is a slightly idealized graph of the net force on a 42 kg dancer executing this move. At what time does the dancer reach the lowest point of her motion, when her speed is zero?A. 0.20 sB. 0.40 sC. Between 0.40 s and 0.70 sD. After 0.70 sarrow_forwardUnderstanding the details of timing and forces in motion can improve the performance of athletes, including dancers. Consider the forces involved in a ballet jump called a sauté demi plié. P9.84a shows the sequence of moves in the jump. The dancer starts upright, then quickly bends her knees, moving downward. After she reaches the bottom of this dip, she extends her legs, pushing herself upward. After this upward push, she leaves the ground, beginning a short period of time in the air. P9.84b is a slightly idealized graph of the net force on a 42 kg dancer executing this move. What is the approximate net impulse on the dancer, from the moment she begins bending her knees to the instant she leaves the floor?A. 15 kg • m/s2 B. 30 kg • m/s2C. 60 kg • m/s2 D. 90 kg • m/s2arrow_forward
- Homework Q6.arrow_forwardA 55-kg child sits on a 1.1-m radius playground merry-go-round without holding on to the rails. a. Someone pushes tangentially, resulting in a torque of 356 N m. How fast is the merry-go round moving (in m/s)? If the child begins to slip off the merry-go-round at this speed, what is the coefficient of friction between the child and the surface?arrow_forwardQ2 mathematical Mechanicsarrow_forward
- Two blocks of wood (1 kg each) are connected with a 1m long rope. Another 1m long rope is tied to one of the blocks and connected to a rotating axle. The ropes can only hold 100N of tension before breaking. (Assume the ropes have no mass). !a. Derive equations for the tension in the ropes as a function of angular velocity.b. At what angular velocity will the rope break? c. Which rope breaks first?arrow_forwardThree small steel balls are connected by rigid, very light rods as shown in the figure. What is the moment of inertia if the object rotates about the x-axis? If we apply a force of 200. N to the most massive ball such that the object will rotate counterclockwise about the x-axis, what angular acceleration will result? 4.00 kg 0 2.00 kg 3.00 kg Y y = 3.00 m y = -2.00 m y = -4.00 marrow_forward1P4 Two hoops or rings (I = MR^2) are centered, lying on a turntable. The smaller ring has radius = 0.050 m; the larger has radius = 0.10 m. Both have a mass of 3.0 kg. What is the total moment of inertia as the turntable spins? Ignore the mass of the turntable. choose 0.038 kgm^2 0.030 kgm^2 0.075 kgm^2 0.0075 kgm^2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY