Wind energy uses large fans to extract energy from the wind and turn it into electric power. Examine the equations below using fundamental dimensions and indicate for each if the equation is a valid or invalid equation; justify your answer for each case.
a. P= η ρA2 v2
b. P= η ρA v2
c. P= η ρA v3
d. P= η ρ2A v
e.
Here, the variables are as follows:
A =area [=] m2
P = power [=] W
v =velocity[=] mi/h or mph
η =efficiency[=] unitless
ρ = density [=] kg/m3
Learn your wayIncludes step-by-step video
Chapter 7 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Additional Engineering Textbook Solutions
Concepts Of Programming Languages
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Starting Out With Visual Basic (8th Edition)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
- The friction in flows through the pipe is defined by a dimensionless number called the fanning friction factor (f). The Fanning friction factor is represented by another dimensionless number, the Reynolds number (Re).It depends on the diameter of the pipe and some parameters related to the fluid. An equation that can predict f given the Reynolds number is given as follows. If Re =4000, e/D=0.01 in this equation, find the value of f using the Simple Iteration method by taking f0=0.1 as the initial value for the solution (ԑ=0.0001)arrow_forwardPlease answer in detail.arrow_forwardA cart weighing 0.5 kg is drawn up a smooth 45° incline by a motor, M, winding up a cable. The force in the cable can be expressed as 5t² N, where t is in seconds. When t = 0, the displacement s = 0 and the initial velocity is 3 m/s. Find the cart's velocity when t = 2 seconds. > Draw a very clear FBD of the cart that you can use to write the equations of motion > Write the equations governing the cart's motion along the incline. Use axes parallel and perpendicular to the incline. Find the velocity requestedarrow_forward
- 0.8 m wo B D E 0.8 m 1.0 m Bar AB rotates about the fixed point A with constant angular velocity wo. The system starts with bar AB horizontal. 1) Use the relative velocity equation to find the velocity of C in terms of the angles 0 and > and their derivatives. 2) Determine the lengths of bars AB and BC so that as bar AB rotates, the collar C moves back and forth between the positions D and E. A design constraint is that bar BC must be longer than bar AB (as shown in sketch). 3) You are given the design constraint that the magnitude of the acceleration of collar C must not exceed 200 m/s². What is the maximum allowable value of wo? 4) Create the following plots for a complete revolution of bar AB using the values for lengths and angular velocity determined above: о о e and > versus time as 2 sub-plots. Position, velocity, and acceleration of C versus time as 3 sub-plots. Velocity and acceleration of C versus its position as 2 sub-plots. - 5) Use your plotted results to describe the…arrow_forwardTwo cables AB and AC are acting on the pole with forces FAB = 740N and FAC = 540N with parameters defining the attachment points shown in the table. We want to write the vector FAB in cartesian vector form. A FAC FAB L X2 Y2 Y1 X1 В parameters value units FAB FAC 740 N 540 N L 7 3.5 m 4 m Write the vector FAR in Cartensian Vector Notation. АВ Round your final answers to 3 significant figures. FAB = i + j+ 524arrow_forwardTwo cables AB and AC are acting on the pole with forces FAB=540N and FAC = 560N with parameters defining the attachment points shown in the table. We want to write the vector AB in cartesian vector form. C Y₂ parameters value units 540 560 5.5 4 3.5 FAB FAC L Z1 Y 72 4 4 Submit Question N N m m m m m A x + 247.123 Y₁ write the vector FAB in Cartensian Vector Notation. Round your final answers to 3 significant figures. FAB= 282.427 Z B xj+-388.337 Narrow_forward
- Mechanical resistancearrow_forwardUse of Infinite Sequences and Series in Problem Solving of Special Theory of Relativity. A spacecraft travels fast the earth has a greater velocity (ⱱ) which approximates the speed of light. The time (to) measured in the spacecraft is different from the time (t) measured on earth. The time difference is given, to = t √1- ⱱ 2/c2 = t (1 – ⱱ 2/c2)1/2.arrow_forward2- find the center of mass, the velocity of the center of mass, the momentum, and the kinetic energy of the following system: do f(xd) xaf] m₁ = 1 kg T₁=1+2j+3 k v₁ = 2î+3ĵ m₂ = 1 kg T₂ = 1-j+ k v₂ = 2) + 3karrow_forward
- The ideal gas law, discovered experimentally, is an equation of state that relates the observable state variables of the gas--pressure, temperature, and density (or quantity per volume): PV = NkBT (or pV = nRT), Figure L₂ Lx 1 of 1 Part A Find the magnitude of the average force (F) in the x direction that the particle exerts on the right-hand wall of the container as it bounces back and forth. Assume that collisions between the wall and particle are elastic and that the position of the container is fixed. Be careful of the sign of your answer. Express the magnitude of the average force in terms of m, vr, and L₂. ► View Available Hint(s) Submit Part B IVE ΑΣΦ ? Imagine that the container from the problem introduction is now filled with N identical gas particles of mass m. The particles each have different x velocities. but their average x velocity squared. denotedarrow_forwardNeed help, round answers to 3 sig figs pleasearrow_forwardWater X 50-mm inside diameter The volume flow rate of the system The pressure at the point "A" The pressure at the point "B" 25-mm diameter As a consultant at one of the country's leading soft drink companies, you are tasked with evaluating the system depicted to determine the following parameters using Bernoulli's Equation if the values assigned to "X" and "Y" are 3m and 0.5m respectively: i. ii. iii.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY