
The Undamped Building.
(a) Show that Eqs.(1)through(3) can be expressed in matrix notation as
x"+ω02Kx=ω02f(t)z,
Where ω02=km ,x=(x1,x2,...,xn)T, z=(1,0,...,0)T,
and
K=(2−100…0−12−10…00−12−1…0⋮⋱⋱⋱⋮0…−12−10…0−11). (ii)
(b) A real
n×n matrix
A is said to be positive definite if
xTAx>0 for every real
n-
xTKx=x12+n−1∑j=1(xj−xj+1)2,
And is therefore positive definite.
(c) Eigenvalues and eigenvectors of real
λ=uTKuuTu>0.
Thus all eigenvalues of K in (ii) are real and positive.
(d) For the cases n=5,10, and 20, demonstrate numerically that the eigenvalues of K, λj=ωj2,j=1,...,n can be ordered as follows:
0<ω12<ω22<⋯<ωn2.
(e) Since K is real and symmetric, it possesses a set of n orthogonal eigenvectors, {u1, u2,..., un}, that is, uiTuj=0 if i≠j ( see Appendix A.4). These eigenvectors can be used to construct a normal mode representation,
x=a1(t)u1+⋯+an(t)un, (iii)
Of the solution of
x"+ω02Kx=ω02f(t)z,
x(0)=x0, x'(0)=v0, (iv).
Substitute the representation (iii) into the differential equation and initial conditions in Eqs. (iv)and use the fact that Kuj=ωj2uj, j=1,...,n and the orthogonality of u1, u2,..., un to show that for each i=1,...,n, the mode amplitude ai(t) satisfies the initial value problem
ai"+ωi2ω02ai=ω02f(t)zi, ai(0)=αi, ai'(0)=βi,
Where
zi=uTizuTiui, αi=uTix0uTiui, βi=uTiv0uTiui.
(f) An unforced pure mode of vibration, say, the j thmode, can be realized by solving the initial value problem (iv) subject to the initial conditions x(0)=Ajuj, where Aj is a mode amplitude factor, in this case, the normal mode solution of the initial value problem (iv) consists of a single term,
x(j)(t)=Ajcos(ω0ωjt)uj.
Thus the natural frequency of the j th mode of vibration is ω0ωj and the corresponding period is 2π/(ω0ωj). Assuming that A1=1, ω0=41, and n=20, plot a graph of the components (floor displacement versus floor number) of the first mode x(1)(t) for several values of t over an entire cycle. Then generate analogous graphs for the second and third pure modes of vibration. Describe and compare the modes of vibration and their relative frequencies.

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
College Algebra with Modeling & Visualization (5th Edition)
- Problem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…arrow_forwardProblem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…arrow_forwardRoedel Electronics produces tablet computer accessories, including integrated keyboard tablet stands that connect a keyboard to a tablet device and holds the device at a preferred angle for easy viewing and typing. Roedel produces two sizes of integrated keyboard tablet stands, small and large. Each size uses the same keyboard attachment, but the stand consists of two different pieces, a top flap and a vertical stand that differ by size. Thus, a completed integrated keyboard tablet stand consists of three subassemblies that are manufactured by Roedel: a keyboard, a top flap, and a vertical stand. Roedel's sales forecast indicates that 7,000 small integrated keyboard tablet stands and 5,000 large integrated keyboard tablet stands will be needed to satisfy demand during the upcoming Christmas season. Because only 500 hours of in-house manufacturing time are available, Roedel is considering purchasing some, or all, of the subassemblies from outside suppliers. If Roedel manufactures a…arrow_forward
- Show three different pairs of integers, a and b, where at least one example includes a negative integer. For each of your examples, determine if each of the following statements are true or falsearrow_forwardThe scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forward(a) Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%. Assume that the five planning scenarios in the Hauck Financial rvices model are equally likely to occur. Hint: Modify model (8.10)-(8.19). Define a variable d, for each scenario and let d₂ > R - R¸ with d ≥ 0. Then make the objective function: Min Let FS = proportion of portfolio invested in the foreign stock mutual fund IB = proportion of portfolio invested in the intermediate-term bond fund LG = proportion of portfolio invested in the large-cap growth fund LV = proportion of portfolio invested in the large-cap value fund SG = proportion of portfolio invested in the small-cap growth fund SV = proportion of portfolio invested in the small-cap value fund R = the expected return of the portfolio R = the return of the portfolio in years. Min s.t. R₁ R₂ = R₁ R R5 = FS + IB + LG + LV + SG + SV = R₂ R d₁ =R- d₂z R- d₂ ZR- d₁R- d≥R- R = FS, IB, LG, LV, SG, SV…arrow_forward
- The Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units. Product is shipped to regional distribution centers located in Boston, Atlanta, and Houston. Because of an anticipated increase in demand, Martin-Beck plans to increase capacity by constructing a new plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas. The following is a linear program used to determine which cities Martin-Beck should construct a plant in. Let y₁ = 1 if a plant is constructed in Detroit; 0 if not y₂ = 1 if a plant is constructed in Toledo; 0 if not y₂ = 1 if a plant is constructed in Denver; 0 if not y = 1 if a plant is constructed in Kansas City; 0 if not. The variables representing the amount shipped from each plant site to each distribution center are defined just as for a transportation problem. *,, = the units shipped in thousands from plant i to distribution center j i = 1 (Detroit), 2 (Toledo), 3 (Denver), 4 (Kansas City), 5 (St.Louis) and…arrow_forwardConsider the following mixed-integer linear program. Max 3x1 + 4x2 s.t. 4x1 + 7x2 ≤ 28 8x1 + 5x2 ≤ 40 x1, x2 ≥ and x1 integer (a) Graph the constraints for this problem. Indicate on your graph all feasible mixed-integer solutions. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several horizontal lines are on the graph. The series of line segments connect the approximate points (0, 4), (3.889, 1.778), and (5, 0). The region is above the horizontal axis, to the right of the vertical axis, and below the line segments. At each integer value between 0 and 4 on the vertical axis, a horizontal line extends out from the vertical axis to the series of connect line segments. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several…arrow_forwardConsider the nonlinear optimization model stated below. Min s.t. 2x²-18x + 2XY + y² - 14Y + 53 x + 4Y ≤ 8 (a) Find the minimum solution to this problem. |at (X, Y) = (b) If the right-hand side of the constraint is increased from 8 to 9, how much do you expect the objective function to change? Based on the dual value on the constraint X + 4Y ≤ 8, we expect the optimal objective function value to decrease by (c) Resolve the problem with a new right-hand side of the constraint of 9. How does the actual change compare with your estimate? If we resolve the problem with a new right-hand-side of 9 the new optimal objective function value is| , so the actual change is a decrease of rather than what we expected in part (b).arrow_forward
- Statement:If 2 | a and 3| a, then 6 a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forwardStatement: If 4 | a and 6 | a, then 24 | a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forward2) dassify each critical point of the given plane autovers system x'=x-2x²-2xy y' = 4y-Sy³-7xyarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning


