Concept explainers
a.
To explain: The reason why the line
b.
To explain: The reason why the Lorentz curve satisfies the conditions
c.
To sketch: The graph of the Lorentz curves
d.
To show: The Gini Index is
e.
To compute: The Gini Index for the cases
f.
To find: The smallest interval
g.
To find: The Gini Index lie for
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
- Does a Limiting Value Occur? A rocket ship is flying away from Earth at a constant velocity, and it continues on its course indefinitely. Let D(t) denote its distance from Earth after t years of travel. Do you expect that D has a limiting value?arrow_forwardContinued This is a continuation of Exercise 13. As we saw earlier, the stock turnover rate of an item is the number of times that the average inventory of the item needs to be replaced as a result of sales in a given time period. Suppose that a hardware store sells 80 shovels each year. a. Suppose that the hardware store maintains an average inventory of 5 shovels. What is the annual stock turnover rate for the shovels? How is this related to the yearly number of orders to the wholesaler needed to restock inventory? b. What would he the annual stock turnover rate if the store maintained an average inventory of 20 shovels? c. Write a formula expressing the annual stock turnover rate as a function of the average inventory of shovels, identify the function and the variable, and state the units.arrow_forwardSales Growth In this exercise, we develop a model for the growth rate G, in thousands of dollars per year, in sales of the product as a function of the sales level s, in thousands of dollars. The model assumes that there is a limit to the total amount of sales that can be attained. In this situation, we use the term unattained sales for difference this limit and the current sales level. For example, if we expect sales grow to 3 thousand dollars in the long run, then 3-s is the unattained sales. The model states that the growth rate G is proportional to the product of the sales level s, and the unattained sales. Assume that the constant of proportionality is 0.3 and that the sales grow to 2 thousand dollars in the long run. a.Find the formula for unattained sales. b.Write an equation that shows the proportionality relation for G. c.On the basis of the equation from the part b, make a graph of G as a function of s. d.At what sales level is the growth rate as large as possible? e.What is the largest possible growth rate?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill