Calculus & Its Applications
12th Edition
ISBN: 9780137590810
Author: Larry J. Goldstein, David C. Lay, David I. Schneider, Nakhle H. Asmar, William Edward Tavernetti
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.1, Problem 57E
Rate of Production Let
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
by Lagrange theorme find (4) Soultions
independed for:
2x (y + z²) P + Y (29 +2²) q = 23
Help me with the accurate answer and solution asap pls pls thank yo u
Pls help me with accurate answer and solution as soon as possible pls
thank you
Chapter 6 Solutions
Calculus & Its Applications
Ch. 6.1 - Determine the following: a. t7/2dt b....Ch. 6.1 - Find a function f(t) that satisfies f(t)=3t+5 and...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Find all antiderivatives of each following...Ch. 6.1 - Determine the following: 4x3dxCh. 6.1 - Determine the following: 13xdx
Ch. 6.1 - Determine the following: 7dxCh. 6.1 - Determine the following: k2dx ((kisaconstant).Ch. 6.1 - Determine the following: xcdx(cisaconstant0)...Ch. 6.1 - Determine the following: xx2dx.Ch. 6.1 - Determine the following: (2x+x2)dx.Ch. 6.1 - Determine the following: 17xdx.Ch. 6.1 - Determine the following: xxdx.Ch. 6.1 - Determine the following: (2x+2x)dx.Ch. 6.1 - Determine the following: (x2x2+13x)dx.Ch. 6.1 - Determine the following: (72x3x3)dx.Ch. 6.1 - Determine the following: 3e2xdx.Ch. 6.1 - Determine the following: exdx.Ch. 6.1 - Determine the following: edx.Ch. 6.1 - Determine the following: 72e2xdx.Ch. 6.1 - Determine the following: 2(e2x+1)dx.Ch. 6.1 - Determine the following: (3ex+2xe0.5x2)dx.Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - In Exercises 25-36, find the value of k that makes...Ch. 6.1 - Find all functions f(t) that satisfy the given...Ch. 6.1 - Find all functions f(t) that satisfy the given...Ch. 6.1 - Find all functions f(t) that satisfy the given...Ch. 6.1 - Find all functions f(t) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Find all functions f(x) that satisfy the given...Ch. 6.1 - Figure 4 shows the graphs of several functions...Ch. 6.1 - Figure 5 shows the graphs of several functions...Ch. 6.1 - Which of the following is lnxdx ? a.1x+C b.xlnxx+C...Ch. 6.1 - Which of the following is xx+1dx?...Ch. 6.1 - Figure 6 contains the graph of a function F(x). On...Ch. 6.1 - Figure 7 contains an antiderivative of the...Ch. 6.1 - The function g(x) in Fig. 8, resulted from...Ch. 6.1 - The function g(x) in Fig.9 resulted from shifting...Ch. 6.1 - Height of a Ball A ball is thrown upward from a...Ch. 6.1 - Free Fall A rock is dropped from the top of a...Ch. 6.1 - Rate of Production Let P(t) be the total output of...Ch. 6.1 - Rate of Production After t hours of operation, a...Ch. 6.1 - Heat DiffusionA package of frozen strawberries is...Ch. 6.1 - Epidemic A flu epidemic hits a town. Let P(t) be...Ch. 6.1 - Profit A small tie shop finds that at a sales...Ch. 6.1 - Prob. 62ECh. 6.1 - Prob. 63ECh. 6.1 - Prob. 64ECh. 6.1 - Prob. 65ECh. 6.2 - Evaluate 01e2x1exdx.Ch. 6.2 - If f(t)=1t, find f(2)f(0).Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - In Exercises 114, evaluate the given integral....Ch. 6.2 - Given 01f(x)dx=3.5 and 14f(x)dx=5, find 04f(x)dx.Ch. 6.2 - Given 11f(x)dx=0 and 110f(x)dx=4, find 110f(x)dx.Ch. 6.2 - Given 13f(x)dx=3 and 13g(x)dx=1, find...Ch. 6.2 - Given 0.53f(x)dx=0 and 0.53(2g(x)+f(x))dx=4, find...Ch. 6.2 - In Exercises 1922, combine the integrals into one...Ch. 6.2 - In Exercises 1922, combine the integrals into one...Ch. 6.2 - In Exercises 1922, combine the integrals into one...Ch. 6.2 - In Exercises 1922, combine the integrals into one...Ch. 6.2 - In Exercises 2326, use formula (8) to help you...Ch. 6.2 - In Exercises 2326, use formula (8) to help you...Ch. 6.2 - In Exercises 2326, use formula (8) to help you...Ch. 6.2 - In Exercises 2326, use formula (8) to help you...Ch. 6.2 - Refer to Fig. 4 and evaluate 02f(x)dx. Figure 4Ch. 6.2 - Refer to Fig. 5 and evaluate 03f(x)dx. Figure 5Ch. 6.2 - Refer to Fig. 6 and evaluate 11f(t)dt. Figure 6Ch. 6.2 - Refer to Fig. 7 and evaluate 12f(t)dt. Figure 7Ch. 6.2 - Net Change in Position A rock is dropped from the...Ch. 6.2 - Net change in Position The velocity at time t...Ch. 6.2 - Net Change in Position The velocity at time t...Ch. 6.2 - Velocity of a Skydiver The velocity of a skydiver...Ch. 6.2 - Net Change in Cost A companys marginal cost...Ch. 6.2 - Prob. 36ECh. 6.2 - Net Increase of an Investment An investment grew...Ch. 6.2 - Depreciation of Real Estate A property with an...Ch. 6.2 - Population Model with Emigration The rate of...Ch. 6.2 - Paying Down a Mortgage You took a 200,000 home...Ch. 6.2 - Mortgage Using the data from the previous...Ch. 6.2 - Radioactive Decay A sample of radioactive material...Ch. 6.2 - Prob. 43ECh. 6.2 - Level of Water in a Tank A conical-shaped tank is...Ch. 6.3 - Repeat Example 6 using midpoints of the...Ch. 6.3 - Repeat Example 6 using left endpoints of the...Ch. 6.3 - In exercises 16, compute the area of the shaded...Ch. 6.3 - In exercises 16, compute the area of the shaded...Ch. 6.3 - In exercise 16, compute the area of the shaded...Ch. 6.3 - In exercise 16, compute the area of the shaded...Ch. 6.3 - In exercise 16, compute the area of the shaded...Ch. 6.3 - In exercise 16, compute the area of the shaded...Ch. 6.3 - In exercises 712, set-up the definite integral...Ch. 6.3 - In exercises 712, set-up the definite integral...Ch. 6.3 - In exercises 712, set-up the definite integral...Ch. 6.3 - In exercises 712, set-up the definite integral...Ch. 6.3 - In exercises 712, set-up the definite integral...Ch. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - In Exercises 1618, draw the region whose area is...Ch. 6.3 - In Exercises 1618, draw the region whose area is...Ch. 6.3 - In Exercises 1618, draw the region whose area is...Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Find the area under each of the given curves....Ch. 6.3 - Prob. 25ECh. 6.3 - Find the real number b0 so that the area under the...Ch. 6.3 - Determine x and the midpoints of the subintervals...Ch. 6.3 - Determine x and the midpoints of the subintervals...Ch. 6.3 - Determine x and the midpoints of the subintervals...Ch. 6.3 - Determine x and the midpoints of the subintervals...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3136, use a Riemann sum to...Ch. 6.3 - In Exercises 3740, use a Riemann sum to...Ch. 6.3 - In Exercises 3740, use a Riemann sum to...Ch. 6.3 - In Exercises 3740, use a Riemann sum to...Ch. 6.3 - Prob. 40ECh. 6.3 - Use a Riemann sum with n=4 and left endpoints to...Ch. 6.3 - Prob. 42ECh. 6.3 - The graph of the function f(x)=1x2 on the interval...Ch. 6.3 - Use a Riemann sum with n=5 and midpoints to...Ch. 6.3 - Estimate the area (in square feet) of the...Ch. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Technology Exercises. The area under the graph of...Ch. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.4 - Find the area between the curves y=x+3 and...Ch. 6.4 - A company plans to increase its production from 10...Ch. 6.4 - Write a definite integral or sum of definite...Ch. 6.4 - Write a definite integral or sum of definite...Ch. 6.4 - Shade the portion of Fig. 23 whose area is given...Ch. 6.4 - Shade the portion ofFig. 24 whose area is given by...Ch. 6.4 - Let f(x) be the function pictured in Fig. 25....Ch. 6.4 - Let g(x) be the function pictured in Fig. 26....Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curve and...Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region between the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region bounded by the curves....Ch. 6.4 - Find the area of the region between y=x23x and the...Ch. 6.4 - Find the area of the region between y=x2 and...Ch. 6.4 - Find the area in Fig. 27 of the region bounded by...Ch. 6.4 - Find the area of the region bounded by y=1/x,y=4x...Ch. 6.4 - Height of a Helicopter A helicopter is rising...Ch. 6.4 - Assembly line productionAfter t hour of operation,...Ch. 6.4 - Cost Suppose that the marginal cost function for a...Ch. 6.4 - ProfitSuppose that the marginal profit function...Ch. 6.4 - Marginal Profit Let M(x) be a companys marginal...Ch. 6.4 - Marginal Profit Let M(x) be a companys marginal...Ch. 6.4 - Prob. 37ECh. 6.4 - VelocitySuppose that the velocity of a car at time...Ch. 6.4 - Deforestation and Fuel wood Deforestation is one...Ch. 6.4 - Refer to Exercise 39. The rate of new tree growth...Ch. 6.4 - After an advertising campaign, a companys marginal...Ch. 6.4 - Profit and Area The marginal profit for a certain...Ch. 6.4 - Velocity and Distance Two rockets are fired...Ch. 6.4 - Distance TraveledCars A and B start at the same...Ch. 6.4 - Displacement versus Distance Traveled The velocity...Ch. 6.4 - Displacement versus Distance Traveled The velocity...Ch. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.5 - A rock dropped from a bridge has a velocity of 32t...Ch. 6.5 - Prob. 2CYUCh. 6.5 - Determine the average value of f(x) over the...Ch. 6.5 - Determine the average value of f(x) over the...Ch. 6.5 - Determine the average value of f(x) over the...Ch. 6.5 - Prob. 4ECh. 6.5 - Determine the average value of f(x) over the...Ch. 6.5 - Prob. 6ECh. 6.5 - Average Temperature During a certain 12-hour...Ch. 6.5 - Average PopulationAssuming that a countrys...Ch. 6.5 - Average Amount of Radium. One hundred grams of...Ch. 6.5 - Average Amount of Money. One hundred dollars is...Ch. 6.5 - Consumers Surplus Find the consumers surplus for...Ch. 6.5 - Consumers Surplus Find the consumers surplus for...Ch. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Volume of Solids of Revolution Find the volume of...Ch. 6.5 - Volume of Solids of Revolution Find the volume of...Ch. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - For the Riemann sum...Ch. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Prob. 42ECh. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6 - What does it mean to antidifferentiate a function?Ch. 6 - Prob. 2FCCECh. 6 - Prob. 3FCCECh. 6 - Prob. 4FCCECh. 6 - Prob. 5FCCECh. 6 - Prob. 6FCCECh. 6 - Prob. 7FCCECh. 6 - Prob. 8FCCECh. 6 - Prob. 9FCCECh. 6 - Prob. 10FCCECh. 6 - Prob. 11FCCECh. 6 - Calculate the following integrals. 32dxCh. 6 - Prob. 2RECh. 6 - Calculate the following integrals. x+1dxCh. 6 - Calculate the following integrals. 2x+4dxCh. 6 - Calculate the following integrals. 2(x3+3x21)dxCh. 6 - Calculate the following integrals. x+35dxCh. 6 - Calculate the following integrals. ex/2dxCh. 6 - Calculate the following integrals. 5x7dxCh. 6 - Calculate the following integrals. (3x44x3)dxCh. 6 - Calculate the following integrals. (2x+3)7dxCh. 6 - Calculate the following integrals. 4xdxCh. 6 - Calculate the following integrals. (5xx5)dxCh. 6 - Calculate the following integrals. 11(x+1)2dxCh. 6 - Calculate the following integrals. 01/8x3dxCh. 6 - Calculate the following integrals. 122x+4dxCh. 6 - Calculate the following integrals. 201(2x+11x+4)dxCh. 6 - Calculate the following integrals. 124x5dxCh. 6 - Calculate the following integrals. 2308x+1dxCh. 6 - Calculate the following integrals. 141x2dxCh. 6 - Calculate the following integrals. 36e2(x/3)dxCh. 6 - Calculate the following integrals. 05(5+3x)1dxCh. 6 - Calculate the following integrals. 2232e3xdxCh. 6 - Calculate the following integrals. 0ln2(exex)dxCh. 6 - Calculate the following integrals. ln2ln3(ex+ex)dxCh. 6 - Calculate the following integrals. 0ln3ex+exe2xdxCh. 6 - Calculate the following integrals. 013+e2xexdxCh. 6 - Find the area under the curve y=(3x2)3 from x=1 to...Ch. 6 - Find the area under the curve y=1+x from x=1 to...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - In Exercises 2936, Find the area of the shaded...Ch. 6 - Find the area of the region bounded by the curves...Ch. 6 - Find the area of the region between the curves...Ch. 6 - Find the function f(x) for which...Ch. 6 - Find the function f(x) for which f(x)=e5x,f(0)=1.Ch. 6 - Describe all solutions of the following...Ch. 6 - Let k be a constant, and let y=f(t) be a function...Ch. 6 - Prob. 43RECh. 6 - Prob. 44RECh. 6 - A drug is injected into a patient at the rate of...Ch. 6 - A rock thrown straight up into the air has a...Ch. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Find the consumers surplus for the demand curve...Ch. 6 - Three thousand dollars is deposited in the bank at...Ch. 6 - Find the average value of f(x)=1/x3 from x=13 to...Ch. 6 - Prob. 54RECh. 6 - In Fig. 2, three regions are labelled with their...Ch. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Prob. 60RECh. 6 - Prob. 61RECh. 6 - Prob. 62RECh. 6 - Prob. 63RECh. 6 - Prob. 64RECh. 6 - Prob. 65RECh. 6 - Prob. 66RECh. 6 - Prob. 67RECh. 6 - Prob. 68RECh. 6 - Prob. 69RECh. 6 - Prob. 70RECh. 6 - Prob. 71RECh. 6 - Prob. 72RECh. 6 - Prob. 73RECh. 6 - Prob. 74RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Exercise 1 Given are the following planes: plane 1: 3x4y+z = 1 0 plane 2: (s, t) = ( 2 ) + ( -2 5 s+ 0 ( 3 t 2 -2 a) Find for both planes the Hessian normal form and for plane 1 in addition the parameter form. b) Use the cross product of the two normal vectors to show that the planes intersect in a line. c) Calculate the intersection line. d) Calculate the intersection angle of the planes. Make a sketch to indicate which angle you are calculating.arrow_forwardOnly 100% sure experts solve it correct complete solutions okarrow_forwardrmine the immediate settlement for points A and B shown in figure below knowing that Aq,-200kN/m², E-20000kN/m², u=0.5, Depth of foundation (DF-0), thickness of layer below footing (H)=20m. 4m B 2m 2m A 2m + 2m 4marrow_forward
- sy = f(x) + + + + + + + + + X 3 4 5 7 8 9 The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem and the Mean Value Theorem for f on the closed interval [0, 9] ? (A A B B C Darrow_forward= Q6 What will be the allowable bearing capacity of sand having p = 37° and ydry 19 kN/m³ for (i) 1.5 m strip foundation (ii) 1.5 m x 1.5 m square footing and (iii)1.5m x 2m rectangular footing. The footings are placed at a depth of 1.5 m below ground level. Assume F, = 2.5. Use Terzaghi's equations. 0 Ne Na Ny 35 57.8 41.4 42.4 40 95.7 81.3 100.4arrow_forwardQ1 The SPT records versus depth are given in table below. Find qan for the raft 12% foundation with BxB-10x10m and depth of raft D-2m, the allowable settlement is 50mm. Elevation, m 0.5 2 2 6.5 9.5 13 18 25 No.of blows, N 11 15 29 32 30 44 0 estigate shear 12%arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY