Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.1, Problem 45E
At a large university, 434 freshman, 883 sophomores, and 43 juniors are enrolled in an introductory algorithms course. How many sections of this course need to be scheduled to accommodate all these students if each section contains 34 students?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A family has two cars. The first car has a fuel efficiency of 16 kilometers per liter of gas and the second has a fuel efficiency of 18 kilometers per liter of gas.
During one particular week, the two cars went a combined total of 3150 kilometers, for a total gas consumption of 190 liters. How many liters were consumed
by each of the two cars that week?
Note that the ALEKS graphing calculator can be used to make computations easier.
First car:
liters
?
Second car:|liters
In a very simple computer chip, 8 wires go from one transistor to a second transistor. For the computer to function, instructions must be sent between these 2 transistors. In how many ways can 4 different instructions be sent between the 2 transistors if no 2 instructions can be sent along the same wire?
A single piece is placed on the lower-left corner square of an 8 × 8-chessboard. The piece may only move horizontally or vertically, one square at a time. How many possible ways are there to move the piece to the opposite corner in 14 moves (the smallest possible number of moves)?
Chapter 6 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 6.1 - There are 18 mathematics majors and 325 computer...Ch. 6.1 - An office building contains 27 floors and has 37...Ch. 6.1 - A multiple-choice test contains 10 questions....Ch. 6.1 - A particular of shirt comes in 12 colors, has a...Ch. 6.1 - Six different fly from New York to Denver and...Ch. 6.1 - There are four major auto routes from Boston to...Ch. 6.1 - How many different three-letter initials can...Ch. 6.1 - How many different three-letter initials with none...Ch. 6.1 - How many different three-letter initials are there...Ch. 6.1 - How many bit strings are there of length eight?
Ch. 6.1 - How many bit strings of length ten both begin and...Ch. 6.1 - How many bit strings are there of length six or...Ch. 6.1 - How many bit strings with length not exceeding n,...Ch. 6.1 - How many bit strings of lengthn,wherenis a...Ch. 6.1 - How many strings are there of lowercase letters of...Ch. 6.1 - How many strings are there of four lowercase...Ch. 6.1 - How many strings of five ASCII characters @ (“at”...Ch. 6.1 - How many 5-element DNA sequences end with A? start...Ch. 6.1 - lg.How many 6-element RNA sequences Do not contain...Ch. 6.1 - How many positive integers between 5 and 31 are...Ch. 6.1 - How many positive integers between 50 and 100 are...Ch. 6.1 - How many positive integers less than 1000 are...Ch. 6.1 - How many positive integers between 100 and 999...Ch. 6.1 - How many positive integers between 1000 and 9999...Ch. 6.1 - How many strings of three decimal digits do not...Ch. 6.1 - How many strings of four decimal digits do not...Ch. 6.1 - Prob. 27ECh. 6.1 - How many license, plates can be made using either...Ch. 6.1 - How many license plates can be made using either...Ch. 6.1 - How many license plates can be made using either...Ch. 6.1 - How many license plates can be made using either...Ch. 6.1 - How many strings of eight uppercase English...Ch. 6.1 - How many strings of eight English letters are...Ch. 6.1 - Prob. 34ECh. 6.1 - How many one-to-one functions are there from a set...Ch. 6.1 - How many functions are there from the set {1,2,n},...Ch. 6.1 - Prob. 37ECh. 6.1 - How many partial functions (seeSection 2.3)are...Ch. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - How many 4-element DNA sequences do not contain...Ch. 6.1 - How many 4-eJement RNA sequenoes contain the base...Ch. 6.1 - On each of the 22 work days in a particular month,...Ch. 6.1 - At a large university, 434 freshman, 883...Ch. 6.1 - Prob. 46ECh. 6.1 - How many ways are there to seat six people around...Ch. 6.1 - In how many ways can a photographer at a wedding...Ch. 6.1 - In how many ways can a photographer at a wedding...Ch. 6.1 - How many bit strings of length seven either begin...Ch. 6.1 - Prob. 51ECh. 6.1 - How many bit strings of length 10 contain either...Ch. 6.1 - How many bit strings of length eight contain...Ch. 6.1 - ...Ch. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Suppose that a password for a computer system must...Ch. 6.1 - The name, of a variable in the C programming...Ch. 6.1 - The name of a variable in the JAVA programming...Ch. 6.1 - 6o, The International Telecommunications Union...Ch. 6.1 - Prob. 61ECh. 6.1 - A key in the Vigenere cryptosystem is a string of...Ch. 6.1 - Prob. 63ECh. 6.1 - Suppose that P and q are prime numbers and than n...Ch. 6.1 - Use the principle of inclusion-exclusion to find...Ch. 6.1 - Prob. 66ECh. 6.1 - Prob. 67ECh. 6.1 - Prob. 68ECh. 6.1 - Prob. 69ECh. 6.1 - Prob. 70ECh. 6.1 - Prob. 71ECh. 6.1 - Determine the number of matches played in a...Ch. 6.1 - Prob. 73ECh. 6.1 - *74-Use the product rule to show that there are 22...Ch. 6.1 - Prob. 75ECh. 6.1 - Use mathematical induction to prove the product...Ch. 6.1 - Prob. 77ECh. 6.1 - Prob. 78ECh. 6.2 - Prob. 1ECh. 6.2 - Show that if there are 30 students in a class,...Ch. 6.2 - A drawer contains a dozen brown socks and a dozen...Ch. 6.2 - Abowl contains 10 red balls and 10 blue balls....Ch. 6.2 - Undergraduate students at a college belong to one...Ch. 6.2 - 6,There are six professors teaching the...Ch. 6.2 - group of five (not necessarily consecutive)...Ch. 6.2 - 8,Let d be a positive integer, Show that among anv...Ch. 6.2 - Letnbe a positive integer. Show that in any set...Ch. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Show that if five integers are selected from the...Ch. 6.2 - i6. Show that if seven integers are selected from...Ch. 6.2 - How many numbers must be selected from the set...Ch. 6.2 - Howmany numbers must be selected from the set...Ch. 6.2 - A company stores products in a warehouse. Storage...Ch. 6.2 - Suppose that there are nine students in a discrete...Ch. 6.2 - i. Suppose that every student in a discrete...Ch. 6.2 - Prob. 22ECh. 6.2 - Construct a sequenceof16 positive integers that...Ch. 6.2 - Prob. 24ECh. 6.2 - Show that whenever 25 girl? and 25 boys are seated...Ch. 6.2 - Prob. 26ECh. 6.2 - Descnbe an algorithm in pseudocode for producing...Ch. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - In the 17th century, there were more than 800,000...Ch. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - A computer network consists of six computers, Each...Ch. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Ad arm wrestler is the champion for a period of 75...Ch. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - ,There are 51 houses on a street, Each house has...Ch. 6.2 - Letibe an irrational number, Showthatfor some...Ch. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.3 - i. List all the permutations of{a, b,c}.Ch. 6.3 - How many different permutations are there of the...Ch. 6.3 - How many permutations of{a, b,c, d,e.fg]end withCh. 6.3 - LetS = {i,2, 3,4, 5}. List all the 3-permutations...Ch. 6.3 - Find the value of each of these quantities P(6,3)...Ch. 6.3 - Find the value of each of these quantities. CCs,i)...Ch. 6.3 - Find the number of 5-permutations of a set Kith...Ch. 6.3 - In how many different orders can five runners...Ch. 6.3 - Prob. 9ECh. 6.3 - There are six different candidates for governor of...Ch. 6.3 - ii.How many bit strings of length 10 contain...Ch. 6.3 - IE.How many bit strings of length12contain exactly...Ch. 6.3 - A group contains n men and n women. How many ways...Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Find the number of circular 3-permutations...Ch. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - How many ways are there for a horse race with...Ch. 6.4 - Find the expansion of (r + using combinatorial...Ch. 6.4 - Find the expansion of Cr + j,)5 using...Ch. 6.4 - Find the expansionCh. 6.4 - Find the coefficient of in Cr + y)13.Ch. 6.4 - How many terms are therein the expansion of...Ch. 6.4 - What isthecoefficient of .v in (1 +1)Ch. 6.4 - What is the coefficient of i9 in (2 - 1)Ch. 6.4 - What is the coefficient ofxsy9 in the expansion of...Ch. 6.4 - What is the coefficient of xloly" in the expansion...Ch. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - IS. Use the binomial theorem to find the...Ch. 6.4 - *3-Use the binomial theorem to find the...Ch. 6.4 - Give a formula for the coefficient ofi^in the...Ch. 6.4 - Prob. 15ECh. 6.4 - The row of Pascal’s triangle containing the...Ch. 6.4 - What is the r ow of Pascal's triangle containing...Ch. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - so. Use Exercise 18 andCorollary 1to show that...Ch. 6.4 - Prob. 21ECh. 6.4 - Suppose thatbis an integer withb> 7. Use the...Ch. 6.4 - Prove Pas cal’s identity, u sing the formula for...Ch. 6.4 - Suppose that t andnare integers withi which...Ch. 6.4 - Provethatifnandfcareintegers^th i< fc using a...Ch. 6.4 - Prove the identity (")(') = (J)(Xf), whenever n,...Ch. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Letnbe a positive integer. Show thatCh. 6.4 - Prob. 30ECh. 6.4 - Prove the hockey-stick identity ('?’)...Ch. 6.4 - Show that if ra is a positive integer, then =2t" i...Ch. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prove the binomial theorem using mathematical...Ch. 6.4 - In this exercise we will count the number of paths...Ch. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Determine a formula involving binomial...Ch. 6.5 - In how many different wavs can five elements be...Ch. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - How many different ways are there to choose a...Ch. 6.5 - A bagel shop has onion bagels, poppy seed bagels,...Ch. 6.5 - io. A croissant shop has plain croissants, cherry...Ch. 6.5 - ii. Howmany ways are there to choose eight coins...Ch. 6.5 - Homy different combinations of pennies, nickels,...Ch. 6.5 - Prob. 13ECh. 6.5 - How many solutions are there to the equation -T| +...Ch. 6.5 - How many solutions are there to the equation -T |...Ch. 6.5 - i6. How many solutions are there to the equation...Ch. 6.5 - strings of 10 ternary digits (o, 1. or 2) are...Ch. 6.5 - ,How many strings of 20-decima] digits are there...Ch. 6.5 - Prob. 19ECh. 6.5 - How many solutions are there to the inequality .ii...Ch. 6.5 - i. A Swedish tour guide has devised a clever way...Ch. 6.5 - w many ways can an airplane pilot be scheduled for...Ch. 6.5 - How many ways are there to distribute six...Ch. 6.5 - How many ways are there to distribute 12...Ch. 6.5 - Howmany wavs aiethereto distribute 12...Ch. 6.5 - Prob. 26ECh. 6.5 - How many positive integers less than 1,000,000...Ch. 6.5 - a8. How many positive integers less than 1,000,000...Ch. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - How many different strings can be made from the...Ch. 6.5 - How many different strings can be made from the...Ch. 6.5 - different strings can be made from the letters...Ch. 6.5 - How many different strings can be made from the...Ch. 6.5 - How many strings idth five or more characters can...Ch. 6.5 - How many strings with seven or more characters can...Ch. 6.5 - How many different bit strings can be formed using...Ch. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - i....Ch. 6.5 - Prob. 42ECh. 6.5 - How many ways are. there to deal hands of seven...Ch. 6.5 - In bridge. the 52 cards of a standard deck are...Ch. 6.5 - How many ways are there to deal hands of five...Ch. 6.5 - , In how many ways can a dozen books be placed on...Ch. 6.5 - How many ways cannbooks be placed on t...Ch. 6.5 - Prob. 48ECh. 6.5 - Prob. 49ECh. 6.5 - Prob. 50ECh. 6.5 - Prob. 51ECh. 6.5 - How many ways are there to distribute five...Ch. 6.5 - Prob. 53ECh. 6.5 - 54-How many ways are there to put five temporary...Ch. 6.5 - Prob. 55ECh. 6.5 - Prob. 56ECh. 6.5 - Prob. 57ECh. 6.5 - 8,Howmany ways are thereto pack eightidentical...Ch. 6.5 - Prob. 59ECh. 6.5 - 6o. How many ways are there to distribute five...Ch. 6.5 - 6i. How many ways are there to distribute five...Ch. 6.5 - Suppose that a basketball league has 32 teams,...Ch. 6.5 - f 63. Suppose that a weapons inspector must...Ch. 6.5 - Howmanv dififerentterms are therein the expansion...Ch. 6.5 - Prob. 65ECh. 6.5 - Prob. 66ECh. 6.5 - Find the coefficient ofi3y2z5 in Qc + y + z)Ch. 6.5 - How many terms are there in the expansionCh. 6.6 - ...Ch. 6.6 - ...Ch. 6.6 - Prob. 3ECh. 6.6 - Prob. 4ECh. 6.6 - Find the next larger permutation in lexicographic...Ch. 6.6 - Find the next larger permutation in lexicographic,...Ch. 6.6 - Use Algorithm 1 to generate the 24 permutations of...Ch. 6.6 - Prob. 8ECh. 6.6 - Use Algorithm 3 to listallthe 3-combinations of{1,...Ch. 6.6 - Show that Algorithm1produces the next larger...Ch. 6.6 - Show that Algorithm 3 produces the next larger...Ch. 6.6 - Develop an algorithm for generating the...Ch. 6.6 - List all 3-permutations of {1,2,3,4,5}. The...Ch. 6.6 - Find the Cantor digits an ti2,that correspond to...Ch. 6.6 - Prob. 15ECh. 6.6 - i6,Find the permutations of {1,2,3,4,5} that...Ch. 6.6 - Prob. 17ECh. 6 - Explain how the sum and product rules can be used...Ch. 6 - Explain how to find the number of bit strings of...Ch. 6 - Prob. 3RQCh. 6 - How can yon find the number of possible outcomes...Ch. 6 - How can you find the number of bit strings...Ch. 6 - State the pigeonhole principle, Explain how the...Ch. 6 - State the generalized pigeonhole principle....Ch. 6 - ft What is the difference between an r-combination...Ch. 6 - What i s Pas cal's tri angle? How can arow of...Ch. 6 - What is meant by a combinatorial proof of an...Ch. 6 - ii. Explain how to prove Pascal's identity using a...Ch. 6 - Stateth e bin omial th eor em. Explain how to pr o...Ch. 6 - Explain how to find a formula for the number of...Ch. 6 - Letnand r be positive integers. Explain why the...Ch. 6 - Prob. 15RQCh. 6 - Prob. 16RQCh. 6 - a) How many ways are there to deal hands of five...Ch. 6 - Describe an algorithm for generating all the...Ch. 6 - i. How many ways are there to choose 6 items from...Ch. 6 - a.H 01 v many ways ar e ther e to ch o o se1o...Ch. 6 - Prob. 3SECh. 6 - How many strings of length10either start with ooo...Ch. 6 - Prob. 5SECh. 6 - Prob. 6SECh. 6 - Prob. 7SECh. 6 - Hoi v many positive integers less than iqoo have...Ch. 6 - Prob. 9SECh. 6 - Prob. 10SECh. 6 - Prob. 11SECh. 6 - How many people are needed to guarantee that at...Ch. 6 - Show that given anv set of 10 positive integers...Ch. 6 - Prob. 14SECh. 6 - Prob. 15SECh. 6 - Prob. 16SECh. 6 - Show that in a sequence ofmintegers there exists...Ch. 6 - Prob. 18SECh. 6 - Show that the decimal expansion of a rational...Ch. 6 - Once a computer worm infects a personal computer...Ch. 6 - si.How many ways are there to choose a dozen...Ch. 6 - ss.Findn if P(n,2] = 110. J\?i, n] = 5040....Ch. 6 - Prob. 23SECh. 6 - Show that ifnandrare nonnegative integers and n >...Ch. 6 - Prob. 25SECh. 6 - Give a combinatorial proof ofCorollary 2ofSection...Ch. 6 - Prob. 27SECh. 6 - a8. Prove using mathematical induction that O>• 2)...Ch. 6 - Prob. 29SECh. 6 - Show that V7' XIt. I = (’) if nis an integer withCh. 6 - Prob. 31SECh. 6 - Prob. 32SECh. 6 - How many bit strings of length n, where n > 4,...Ch. 6 - Prob. 34SECh. 6 - Prob. 35SECh. 6 - Prob. 36SECh. 6 - How many ways are there to assign 24 students to...Ch. 6 - Prob. 38SECh. 6 - - How many solutions are there to the equation xt...Ch. 6 - How many different strings can be made from the...Ch. 6 - How many subsets of a set with ten el e m ents...Ch. 6 - Prob. 42SECh. 6 - Prob. 43SECh. 6 - How many ways are. there to seat six boys and...Ch. 6 - How many ways are there to distribute six objects...Ch. 6 - How many ways are there to distribute five obj...Ch. 6 - Find these signless Stirling numb er s of the...Ch. 6 - Show that ifnis a positive integer, then ,Ch. 6 - Prob. 49SECh. 6 - Prob. 50SECh. 6 - Prob. 51SECh. 6 - j2, How many n-element RXA sequences consist of 4...Ch. 6 - *53. Suppose that when an enzyme that breaks RXA...Ch. 6 - Suppose that when an enzyme that breaks RXA chains...Ch. 6 - Devise an algorithm for generating all the...Ch. 6 - Devise an algorithm for generating all the...Ch. 6 - Prob. 57SECh. 6 - Prob. 58SECh. 6 - Prob. 1CPCh. 6 - Prob. 2CPCh. 6 - Prob. 3CPCh. 6 - Prob. 4CPCh. 6 - Given a positive integern,listallthe permutations...Ch. 6 - Prob. 6CPCh. 6 - Prob. 7CPCh. 6 - Prob. 8CPCh. 6 - Prob. 9CPCh. 6 - Prob. 10CPCh. 6 - Prob. 1CAECh. 6 - Prob. 2CAECh. 6 - Prob. 3CAECh. 6 - Prob. 4CAECh. 6 - Prob. 5CAECh. 6 - Prob. 6CAECh. 6 - Prob. 7CAECh. 6 - Prob. 8CAECh. 6 - Prob. 9CAECh. 6 - Describe some of the earliest uses of the...Ch. 6 - Prob. 2WPCh. 6 - Discuss the importance of combinatorial reasoning...Ch. 6 - Jlanv combinatonal identities are described in...Ch. 6 - Prob. 5WPCh. 6 - Prob. 6WPCh. 6 - Prob. 7WPCh. 6 - Describe the latest discoveries of values and...Ch. 6 - Prob. 9WPCh. 6 - Prob. 10WP
Additional Math Textbook Solutions
Find more solutions based on key concepts
Evaluate the integrals in Exercises 1–46.
1.
University Calculus: Early Transcendentals (4th Edition)
Provide an example of a qualitative variable and an example of a quantitative variable.
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
1. How much money is Joe earning when he’s 30?
Pathways To Math Literacy (looseleaf)
147. Draining a tank Water drains from the conical tank shown in the accompanying figure at the rate .
a. What...
University Calculus
For Problems 23-28, write in simpler form, as in Example 4. logbFG
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Compute the complement and supplement of 61. a. Complement = -61, supplement = 119 b. Complement = -61, supplement = 299 c. Complement = 119, supplement = 29 d. Complement = 29, supplement = 119arrow_forwardA community baseball stadium has 10 seats in the first row, 13 seats in the second row, 16 seats in the third row, and so on. There are 56 rows in all. What is the seating capacity of the stadium?arrow_forwardFind the number of ways that 6 teachers can be assigned to 4 sections of an introductory psychology course if no teacher is assigned to more than one section.arrow_forward
- A car company is going to issue new ID codes to its employees. Each code will have one digit followed by four letters. The letter V and the digits 3 , 4 , and 5 will not be used. So, there are 25 letters and 7 digits that will be used. Assume that the letters can be repeated. How many employee ID codes can be generated?arrow_forwardA large corporation is concerned with security and identify theft. So, unsteady of using workers names, they are going to assign each person a code. It will consist of two letters, followed by two digits. How many different codes existarrow_forwardThere is a factory that makes widgets in different colors. The production time for each color is different. At the end of each day, all the widgets produced that day are placed in boxes. On a certain day, the factory made 1,900 gold widgets and 4,680 red widgets. It takes 40 minutes to produce a batch of gold widgets and 26 minutes to produce a batch of red widgets. Determine the largest number of widgets that can be placed in each box if it is required that all boxes contain the same number of widgets and each box contains only one color. Explain the steps and problem-solving strategy used to determine the answer. 1. Explain why the final answer is a greatest common divisor, least common multiple, or neither. F. Determine the answer to the following question: “In a factory, if both colors of widgets start production at the same time and run continuously, after how many minutes will their starting time align again?” Explain the steps and problem-solving strategy used to determine…arrow_forward
- If it will be allowed to use a number repeatedly, how many 4-digit numbers can we form from the numbers 4, 5, 6, 7, 8, and 9.arrow_forwardSuppose you have two egg-timers (hour-glasses) — one measures in 32-minute intervals, and the other measures in 12-minute intervals. • Use the extended Euclidean algorithm to obtain an equation that explains how you could time a 8 minute egg with these two timersarrow_forwardA manager must select three coders from her group to write three different software projects. There are 7 junior and 3 senior coders in her group. The first project can be written by any of the coders. The second project must be written by a senior person and the third project must be written by a junior person. How many ways are there for her to assign the three coders to the projects if no person can be assigned to more than one project?arrow_forward
- Suppose a company needs temporary passwords for the trial of a new payroll software. Each password will have two letters, followed by one digit, followed by one letter. The letter W will not be used. So, there are 25 letters and 10 digits that will be used. Assume that the letters can be repeated. How many passwords can be created using this format?arrow_forwardA door lock consists of seven push buttons. If each "combination" consists of pushing three numbers at once and then two at once, and pushing the rest one by one. (a) How many possible codes are there? (b) If each code takes 3 seconds to try, what is the maximum length of time that it will take to get through the door?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
12. Searching and Sorting; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=6LOwPhPDwVc;License: Standard YouTube License, CC-BY
Algorithms and Data Structures - Full Course for Beginners from Treehouse; Author: freeCodeCamp.org;https://www.youtube.com/watch?v=8hly31xKli0;License: Standard Youtube License