An object of irregular shape has a characteristic length of
Trending nowThis is a popular solution!
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
- An electrical transmission line of 1.2-cm diameter carries a current of 200 amps and has a resistance of 310-4 ohm per meter of length. If the air around this line is at v, determine the surface temperature on a windy day, assuming a wind blows across the line at 33 km/h.arrow_forwardAn average man has abody surface area of 1.8m2 and a skin temperature of 33degrees celcius .The convection heat transfer coefficient for a clothed person walking in still air is expressed as {h,8.6V^0.53}FOR 0.5<v<2m/s,where V is the walking velocityin m/s.Assuming the average surface temperature of the clothed person to be 30degrees celcius, determine the rate of heat loss from an average man walking in still air at 10degrees celcius by convectionat a walking velocity of (a)0.5m/s (b)1.0m/s (c)1.5m/s (d)2.0m/sarrow_forwardThe passenger compartment of a minivan traveling at 60 mph can be modeled as a 3.2-ft-high, 6-ft-wide, and 11-ftlong rectangular box whose walls have an insulating value of R-3 (i.e., a wall thickness-to-thermal conductivity ratio of 3 h?ft2?°F/Btu). The interior of a minivan is maintained at an average temperature of 70°F during a trip at night while the outside air temperature is 90°F. The average heat transfer coefficient on the interior surfaces of the van is 1.2 Btu/h?ft2?°F. The air flow over the exterior surfaces can be assumed to be turbulent because of the intense vibrations involved, and the heat transfer coefficient on the front and back surfaces can be taken to be equal to that on the top surface. Disregarding any heat gain or loss by radiation, determine the rate of heat transfer from the ambient air to the van. Assume the air flow to be entirely turbulent because of the intense vibrations involved. Use a film temperature of 80°F for evaluations of air properties at 1 atm.arrow_forward
- A horizontal pipe having a surface temperature of 67 °C and diameter of 25 cm is buried at a depth of 1.2 m in the earth at a location where k = 1.8 W/m-°C. The earth surface temperature is 15 °C. Calculate the shape factor if the pipe length is 10 m.arrow_forwardThe temperature of a tank in the form of liquid nitrogen is -10 ° C. Tank diameter is 16 cm. The amount of heat lost by convection and radiation from the tank to the environment is 65.5 W / m. Calculate the temperature of the environment where the tank is located .h = 4.35 W / m2K, e= 1.arrow_forward3. Consider two large isothermal plates separated by 2-mm thick oil film. The upper plate moves as a constant velocity of 12 m/s, while the lower plate is stationary. Both plates are maintained at 24 °C. a. Obtain relations for the velocity and temperature distribution in the oil b. Determine the maximum temperature in the oil and the heat flux from the oil to each plate. Properties: k= 0.145 W/mK µ= 0.8374 kg/ms =0,8374 Ns/m?arrow_forward
- A horizontal pipe having a surface temperature of 67 °C and diameter of 20 cm is buried at a depth of 1 m in the earth at a location where k = 1.8 W/m-°C. The earth surface temperature is 15 °C. Calculate the shape factor if the pipe length is 10 m.arrow_forwardA black 20-by-20-cm plate has air forced over it at a velocity of 2 m/s and a temperature of 0◦C. The plate is placed in a large room whose walls are at 30◦C. The back side of the plate is perfectly insulated. Calculate the temperature of the plate resulting from the convection-radiation balance. H = 12 W/m2.C.arrow_forwardThe top surface of the passenger car of a train moving at a velocity of 70 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar radiation at a rate of 200 W/m, and the temperature of the ambient air is 30°C. Assuming the roof of the car to be perfectly insulated and the radiation heat exchange with the surroundings to be small relative to convection, determine the equilibrium temperature of the top surface of the car. Properties of air at 30°C are: The conductivity k = 0.02588 W/m. °C, The kinematic viscosity v == 1.608 x 10-5 m2/s The Prandtl number: Pr = 0.7282. 200 W/m2 Air 30°C 70 km/h The following three correlations hold for the average Nusselt number for a flow on a flat plate (according to the type of flow on this plate): 0.5 x Pr1/3 0.664RE Turbulent flow: Nu, = 0.037RE,0 x Pr/3 Mixed laminar and turbulent flow: Nu, = (0.037RE Laminar flow: Nu %3D 0.8-871) × Pr/3arrow_forward
- The temperature of a cylindrical tank containing liquid nitrogen is -10 ° C. Tank diameter is 16 cm. The amount of heat lost by convection and radiation from the tank to the environment is 65.5 W / m. Calculate the temperature of the environment where the tank is located: h = 4.35 W / m2K, ∈ = 1.arrow_forwardA spherical pellet (ρ =1000 kg/m3 , c = 1000 J/(kg⋅K)) with a radius ro = 1 cm is cooled from an initial temperature of 200°C by immersion in water bath at 10°C with a convection coefficient h = 100 W/(m2 K). Evaluate the temperature in the center and on the surface of the pellet after 10 s of immersion for two cases: (a) Thermal conductivity of the pellet k = 0.1 W/(m⋅K) (b) Thermal conductivity of the pellet k = 5 W/(m⋅K)arrow_forwardA plate heated with a heat flux of 5 kW/m^2 and has an emissivity of 0.3. the air is over the plate has a temperature of 313 K and the heat transfer coefficient is 15 W/m^2K. the surrounding temperature is also the same as the air temperature. *Determine the surface temperature of the plate.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning