
A rectangular array of mn numbers arranged in n rows, each consisting of m columns, is said to contain a saddlepoint if there is a number that is both the minimum of its row and the maximum of its column. For instance, in the array 1 3 20 −2 6.5 12 3 the number 1 in the first row, first column is a saddlepoint. The existence of a saddlepoint is of significance in the theory of games. Consider a rectangular array of numbers as described previously and suppose that there are two individuals— A and B—who are playing the following game: 4 is to choose one of the numbers 1, 2,. .., n and B one of the numbers 1, 2,. . ., m. These choices are announced simultaneously, and if A chose i and B chose j. then A wins from B the amount specified by the number in the
ith row, jth column of the array. Now suppose that the array contains a saddle point—say the number in the row r and column k call this number
xrk. Now if player A chooses row r, then that player can guarantee herself a win of at least
xrk (since
xrk is the minimum number in the row r). On the other hand, if player B chooses column k, then he can guarantee that he will lose no more than
xrk (since
xrk is the maximum number in the column k). Hence, as A has a way of playing that guarantees her a win of
xrk and as B has a way of playing that guarantees he will lose no more than
xrk it seems reasonable to take these two strategies as being optimal and declare that the value of the game to player A is
xrk. If the nm numbers in the rectangular array described are independently chosen from an arbitrary continuous distribution, what is the

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
A First Course in Probability (10th Edition)
- in a coffee shop, 160 customers came in. Of these, 60 bought coffe and cake and the rest ordered just coffee. determine the probability that the next person will buy coffee and cakearrow_forwardTwo dice are rolled and their sum calculated. Draw a table to show all of the possibilities. Determine the theoretical probability of rolling a sum of 7. And determine the theoretical probability of rolling a sum greater than 9arrow_forwardA football player makes 350 out of every 400 passes he throws. In a game he usually throws 26 passes. Estimate how many of these passes will be successfularrow_forward
- Q prove or disprove: If Ely/x) = x = c(dipy =BCCo (BVC) ECxly)=y, and E(X2), Ely)arrow_forwardIn a small office, there are m = 5 typists who need to use a single typewriter to complete their reports. Assume the time each typist takes to prepare a report follows an exponential distribution with an average of 20 minutes per preparation (A = 3 reports/hour), and the service time for the typewriter to type out a report also follows an exponential distribution, averaging 30 minutes to complete a report (μ 2 reports/hour). Given that the number of typists is finite and all typists = share one typewriter, they will form a waiting queue. (1). Describe this queuing system and explain how it fits the characteristics of the M/M/1/∞0/m model. (2). Calculate the probability that any typist is using the typewriter at steady-state. (3). Calculate the average number of typists waiting in the queue at steady-state. (4). Considering the need to reduce waiting time, if an additional typewriter is introduced (turning into a two-server system, or M/M/2/∞0/m model), analyze the expected impact,…arrow_forwardCan you tell the answerarrow_forward
- Theorem 2.4 (The Hölder inequality) Let p+q=1. If E|X|P < ∞ and E|Y| < ∞, then . EXY SEXY ≤ Xp Yq.arrow_forward2 P(x,y). kx²y X: 1,2 5.11273 Find k Find P(x/y) ③ Mxy Ng q oxy วarrow_forwardThe joint density function of two continuous random variables X and Y is: p(x, y) = {Kcos(x + y) Find (i) the constant K 0 0arrow_forward
- p(x,y) = {e-x -(x+y) 0 x ≥ 0, y ≥ 0 otherwise find x,y,Exy, by Охarrow_forwardIf X is a continuous random variable having pdf as shown. Find a) the constant k b) P(X>1) c) X, X², 0%, standard deviation. n(x) k -2 -1 0 1 2arrow_forwardThe joint probability function for the random variables X and Y is y 0 1 2 P(X, Y) = x0 [3/28 9/28 3/281 = 13/14 3/14 2 1/28 0 0 0 Find Mx, My, E(XY), OXY.arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt




