University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 48CQ
Give at least one argument in support of the matter-wave hypothesis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform plasma made up of electrons has a plasma frequency of
2.18 × 107 s-¹.
(a) Calculate the electron number density in the plasma.
(b) An electromagnetic wave propagates through the plasma with
wavenumber k = 102 m ¹. Calculate its phase speed.
The Sun is approximately an ideal blackbody radiator with a surface temperature of 5800 K. (a) Find the wavelength at which its spectral radiancy is maximum and (b) identify the type of electromagnetic wave corresponding to that wavelength. (c) As we shall discuss in Chapter 44, the universe is approximately an ideal blackbody radiator with radiation emitted when atoms first formed.Today the spectral radiancy of that radiation peaks at a wavelength of 1.06 mm (in the microwave region).What is the corresponding temperature of the universe?
Explain the physical interpretation of the four Maxwell relation.(Explain individually)
Chapter 6 Solutions
University Physics Volume 3
Ch. 6 - Check Your Understanding The flame of a...Ch. 6 - Check Your Understanding An iron poker is being...Ch. 6 - Check Your Understanding Suppose that two stars, ...Ch. 6 - Check Your Understanding A molecule is vibrating...Ch. 6 - Check Your Understanding Would the result in...Ch. 6 - Check Your Understanding A yellow 589-nm light is...Ch. 6 - Check Your Understanding Cut-off frequency for the...Ch. 6 - Check Your Understanding An incident 71-pm X-ray...Ch. 6 - Check Your Understanding What are the limits of...Ch. 6 - Check Your Understanding When an election in a...
Ch. 6 - Check Your Understanding What is de Broglie’s...Ch. 6 - Check Your Understanding Find the de Broglie...Ch. 6 - Check Your Understanding Find the de Brogue...Ch. 6 - Check Your Understanding For the situation...Ch. 6 - Check Your Understanding Suppose that the diameter...Ch. 6 - Which surface has a higher temperature — the...Ch. 6 - Describe what you would see when looking at a body...Ch. 6 - Explain the color changes in a hot body as its...Ch. 6 - Speculate as to why UV light causes sunburn,...Ch. 6 - Two cavity radiators are constructed with walls...Ch. 6 - Discuss why some bodies appear black, other bodies...Ch. 6 - If everything radiates electromagnetic energy, why...Ch. 6 - How much does the power radiated by a blackbody...Ch. 6 - For the same monochromatic light source, would the...Ch. 6 - In the interpretation of the photoelectric effect,...Ch. 6 - Explain how you can determine the work function...Ch. 6 - Suppose that in the photoelectric-effect...Ch. 6 - Speculate how increasing the temperature of a...Ch. 6 - Which aspects of the photoelectric effect cannot...Ch. 6 - Is the photoelectric effect a consequence of the...Ch. 6 - The metals sodium, iron, and molybdenum have work...Ch. 6 - Discuss any similarities and differences between...Ch. 6 - Which has a greater momentum: an UV photon or an...Ch. 6 - Does changing the intensity of a monochromatic...Ch. 6 - Can the Compton effect occur with visible light?...Ch. 6 - Is it possible in the Compton experiment to...Ch. 6 - Show that the Compton wavelength has the dimension...Ch. 6 - At what scattering angle is the wavelength shift...Ch. 6 - Explain why the patterns of bright emission...Ch. 6 - Do the various spectral lines of the hydrogen atom...Ch. 6 - The Balmer series for hydrogen was discovered...Ch. 6 - When the absorption spectrum of hydrogen at room...Ch. 6 - Hydrogen accounts for about 75% by mass of the...Ch. 6 - Discuss the similarities and differences between...Ch. 6 - Discuss the way in which Thomson’s model is...Ch. 6 - If, in a hydrogen atom, an electron moves to an...Ch. 6 - How is the energy conserved when an atom makes a...Ch. 6 - Suppose an electron in a hydrogen atom makes a...Ch. 6 - Discuss why the allowed energies of the hydrogen...Ch. 6 - Can a hydrogen atom absorb a photon whose energy...Ch. 6 - Why can you see through glass but not through...Ch. 6 - Do gravitational forces have a significant effect...Ch. 6 - Show that Planck’s constant has the dimensions of...Ch. 6 - Which type of radiation is most suitable for the...Ch. 6 - Speculate as to how the diffraction patterns of a...Ch. 6 - If an electron and a proton are traveling at the...Ch. 6 - If a particle is accelerating, how does this...Ch. 6 - Why is the wave-like nature of matter not observed...Ch. 6 - What is the wavelength of a neutron at rest?...Ch. 6 - Why does the setup of Davisson—Germer experiment...Ch. 6 - Give an example of an experiment in which light...Ch. 6 - Discuss: How does the interference of water waves...Ch. 6 - Give at least one argument in support of the...Ch. 6 - Give at least one argument in support of the...Ch. 6 - Explain the importance of the Young double-slit...Ch. 6 - Does the Heisenberg uncertainty principle allow a...Ch. 6 - Can the de Brogue wavelength of a particle be...Ch. 6 - Do the photons of red light produce better...Ch. 6 - Discuss the main difference between an SEM and a...Ch. 6 - A 200-W heater emits a 1.5-m radiation. (a) What...Ch. 6 - A 900-W microwave generator in an oven generates...Ch. 6 - (a) For what temperature is the peak of blackbody...Ch. 6 - The tungsten elements of incandescent light bulbs...Ch. 6 - Interstellar space is filled with radiation of...Ch. 6 - The radiant energy from the sun reaches its...Ch. 6 - A photon has energy 20 keV. What are its frequency...Ch. 6 - The wavelengths of visible light range from...Ch. 6 - What is the longest wavelength of radiation that...Ch. 6 - What is the longest wavelength of radiation that...Ch. 6 - Estimate the binding energy of electrons in...Ch. 6 - The work function for potassium is 2.26 eV. What...Ch. 6 - Estimate the work function of aluminum, given that...Ch. 6 - What is the maximum kinetic energy of...Ch. 6 - A 120-nm UV radiation illuminates a gold-plated...Ch. 6 - A 400-nm violet light ejects photoelectrons with a...Ch. 6 - A 600-nm light falls on a photoelectric surface...Ch. 6 - The cutoff wavelength for the emission of...Ch. 6 - Find the wavelength of radiation that can eject...Ch. 6 - Find the wavelength of radiation that can eject...Ch. 6 - Find the maximum velocity of photoelectrons...Ch. 6 - What is the momentum of a 589-nm yellow photon?Ch. 6 - What is the momentum of a 4-cm microwave photon?Ch. 6 - In a beam of white light (wavelengths from 400 to...Ch. 6 - What is the energy of a photon whose momentum is...Ch. 6 - What is the wavelength of (a) a 12-keV X-ray...Ch. 6 - Find the momentum and energy of a 1.0-Å photon.Ch. 6 - Find the wavelength and energy of a photon with...Ch. 6 - A -ray photon has a momentum of 8.001021 kg •...Ch. 6 - (a) Calculate the momentum of a 2.5-pm photon. (b)...Ch. 6 - Show that p=h and Ef=hf are consistent with the...Ch. 6 - Show that the energy E in eV of a photon is given...Ch. 6 - For collisions with free electrons, compare the...Ch. 6 - X-rays of wavelength 12.3 pm are scattered from a...Ch. 6 - Calculate the wavelength of the first line in the...Ch. 6 - Calculate the wavelength of the fifth line in the...Ch. 6 - Calculate the energy changes corresponding to the...Ch. 6 - Determine the wavelength of the third Balmer line...Ch. 6 - What is the frequency of the photon absorbed when...Ch. 6 - When a hydrogen atom is in its ground state, what...Ch. 6 - When a hydrogen atom is in its third excided...Ch. 6 - What is the longest wavelength that light can have...Ch. 6 - For an electron in a hydrogen atom in the n=2...Ch. 6 - Find the ionization energy of a hydrogen atom in...Ch. 6 - It has been measured that it required 0.850 eV to...Ch. 6 - What is the radius of a hydrogen atom when the...Ch. 6 - Find the shortest wavelength in the Balmer series....Ch. 6 - Show that the entire Paschen series lies in the...Ch. 6 - Do the Balmer series and the Lyman series overlap?...Ch. 6 - (a) Which line in the Balmer series is the first...Ch. 6 - A 4.653-urn emission line of atomic hydrogen...Ch. 6 - At what velocity will an electron have a...Ch. 6 - What is the de Brogue wavelength of an electron...Ch. 6 - What is the de Brogue wavelength of an electron...Ch. 6 - What is the de Brogue wavelength of a proton whose...Ch. 6 - What is the de Brogue wavelength of a 10-kg...Ch. 6 - (a) What is the energy of an electron whose de...Ch. 6 - The de Brogue wavelength of a neutron is 0.01 nm....Ch. 6 - What is the wavelength of an electron that is...Ch. 6 - At what velocity does a proton have a 6.0-fm...Ch. 6 - What is the velocity of a 0.400-kg billiard ball...Ch. 6 - Find the wavelength of a proton that is moving at...Ch. 6 - An AM radio transmitter radiates 500 kW at a...Ch. 6 - Find the Lorentz factor and de Brogue’s...Ch. 6 - Find the Lorentz factor and de Brogue’s...Ch. 6 - What is the kinetic energy of a 0.01-nm electron...Ch. 6 - If electron is to be diffracted significantly by a...Ch. 6 - X-rays form ionizing radiation that is dangerous...Ch. 6 - Solar wind (radiation) that is incident on the top...Ch. 6 - Treat the human body as a blackbody and determine...Ch. 6 - Show that Wien’s displacement law results from...Ch. 6 - Show that Stefan’s law results from Planck’s...Ch. 6 - Determine the power intensity of radiation per...Ch. 6 - The HC1 molecule oscillates at a frequency of 87.0...Ch. 6 - A quantum mechanical oscillator vibrates at a...Ch. 6 - In about 5 billion years, the sun will evolve to a...Ch. 6 - A sodium lamp emits 2.0 W of radiant energy, most...Ch. 6 - Photoelectrons are ejected from a photo electrode...Ch. 6 - If the work function of a metal is 3.2 eV, what is...Ch. 6 - The work function of a photoelectric surface is...Ch. 6 - A 400-nm laser beam is projected onto a calcium...Ch. 6 - (a) Calculate the number of photoelectrons per...Ch. 6 - A laser with a power output of 2.00 mW at a 400-nm...Ch. 6 - The work function for barium is 2.48 eV. Find the...Ch. 6 - (a) Calculate the wavelength of a photon that has...Ch. 6 - (a) Find the momentum of a 100-keV X-ray photon....Ch. 6 - The momentum of light, as it is for particles, is...Ch. 6 - A photon of energy 5.0 keV collides with a...Ch. 6 - A 0.75-nm photon is scattered by a stationary...Ch. 6 - Find the maximum change in X-ray wavelength that...Ch. 6 - A photon of wavelength 700 nm is incident on a...Ch. 6 - What is the maximum kinetic energy of an electron...Ch. 6 - Singly ionized atomic helium He +1 is a...Ch. 6 - A triply ionized atom of betyllium Be3+ is a...Ch. 6 - In extreme-temperature environments, such as those...Ch. 6 - (a) Calculate the ionization energy for He+. (b)...Ch. 6 - Experiments are performed with ultracold neutrons...Ch. 6 - Find the velocity and kinetic energy of a 6.0-fm...Ch. 6 - The spacing between crystalline planes in the NaC1...Ch. 6 - What is the wavelength of an electron accelerated...Ch. 6 - Calculate the velocity of a 1.0-m electron and a...Ch. 6 - In a supercollider at CERN, protons are...Ch. 6 - Find the de Brogue wavelength of an electron...Ch. 6 - The cutoff wavelength for the emission of...Ch. 6 - Compare the wavelength shift of a photon scattered...Ch. 6 - The spectrometer used to measure the wavelengths...Ch. 6 - Consider a hydrogen-like ion where an electron is...Ch. 6 - Assume that a hydrogen atom exists in the n=2...Ch. 6 - An atom can be formed when a negative muon is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the wave function in (a) Equation 7.68 satisfies Equation 7.61, and (b) Equation 7.69 satisfies Equation 7.63.arrow_forwardWhat is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardIf the ground state energy of a simple harmonic oscillator is 1.25 eV, what is the frequency of its motion?arrow_forward
- A collection of atoms has 20% of the sample in a state 4.7 eV above the ground state. If these emit coherent radiation, what is the wavelength of the laser light produced in nanometers? Please give your answer with no decimal places. (c = 3.00 × 108 m/s, h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J)arrow_forwardThe temperature of an electric heating element is 150°C. At what wavelength does the radiation emitted from the heating element reach its peak? Model the tungsten filament of a lightbulb as a black body at temperature 2 900 K. (a) Determine the wave- length of light it emits most strongly. (b) Explain why the answer to part (a) suggests that more energy from the lightbulb goes into infrared radiation than into vis- ible light.arrow_forwardGiven Maxwell-Boltzmann distribution f(v) derive energy distribution F(E), where E=mv^2/2.arrow_forward
- Which of the following is an advantage of using electrons in cryo-EM as opposed to X-ray electromagnetic radiation in crystallography. Check all that apply retain amplitude information V permit to obtain charge density distribution magnification of the signal due to lattice effects V retain phase information Which of the following are NOT important in post-image analysis. Check all that apply sufficiently large number of images for correct image reconstruction O determination of relative sample orientation back projection of your image O reconstruction of phase information similar to X-ray crystallography process Which of the following methods are NOT used for cryo-EM image reconstruction backprojection fourier inversion multiple rounds of refinement of your model use of a known homologous structure as a refererence splitting your data set in half ( or more) parts and working with each one individually to have a cross-check validation of your model O all of the choices are used in…arrow_forward(2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forwardPulsed lasers are very similar to regular lasers, except they don't continuously emit laser light. Baby spice is looking at one on Ebay, and she finds a pulsed He-Ne laser that emits a cylindrical beam of light with a diameter of 0.750 cm. Each pulse lasts for 1.30 ns, and each burst contains an amount of energy equal to 3.00 J. Baby Spice has the following questions about this laser. (a) What is the length of each pulse of laser light? m (b) What is the average energy per unit volume for each pulse? J/m³arrow_forward
- Chemists use infrared absorption spectra to identify chemicals in a sample. In one sample, a chemist finds that light of wavelength 5.8 mm is absorbed when a molecule makes a transition from its ground harmonic oscillator level to its first excited level. (a) Find the energy of this transition. (b) If the molecule can be treated as a harmonic oscillator with mass 5.6 * 10-26 kg, find the force constant.arrow_forwardIf you know that the Debye temperature of silver is 215 K, then the maximum frequency of the phonons is (in units of -:) GHzarrow_forwardA collection of atoms has 20% of the sample in a state 7.60 eV above the ground state. If these emit coherent radiation, what is the wavelength of the laser light produced in nanometers? (c = 3.00 × 108 m/s, h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J) Give your answer as a whole number.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning