College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An air puck of mass m1 = 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of m2 = 1.0 kg is tied to it (Fig. P7.27). The suspended mass remains in equilibrium while the puck on the tabletop revolves. (a) What is the tension in the string? (b) What is the horizontal force acting on the puck? (c) What is the speed of the puck?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.0340 kg, the string has length L = 0.720 m and negligible mass, and the bob follows a circular path of circumference 0.618 m. What are (a) the tension in the string and (b) the period of the motion? (a) Number Units (b) Number Units Bob Cord Larrow_forwardA small 0.360-kg object moves on a frictionless horizontal table in a circular path of radius 2.90 m. The angular speed is 4.35 rad/s. The object is attached to a string of negligible mass that passes through a small hole in the table at the center of the circle. Someone under the table begins to pull the string downward to make the circle smaller. If the string will tolerate a tension of no more than 167 N, what is the radius of the smallest possible circle on which the object can move?arrow_forwardIn the figure, two blocks, of mass m1 = 341 g and m2 = 526 g, are connected by a massless cord that is wrapped around a uniform disk of mass M = 586 g and radius R = 10.6 cm. The disk can rotate without friction about a fixed horizontal axis through its center; the cord cannot slip on the disk. The system is released from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension T1 in the cord at the left and (c) the tension T2 in the cord at the right.arrow_forward
- A horizontal circular platform rotates counterclockwise about its axis at the rate of 0.885 rad/s. You, with a mass of 73.7 kg, walk clockwise around the platform along its edge at the speed of 1.17 m/s with respect to the platform. Your 20.3 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 17.5 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 91.9 kg and radius 1.99 m. Calculate the total angular momentum of the system. total angular momentum: kg · m2/sarrow_forwardThere is a clever kitchen gadget for drying lettuce leaves after you was them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the ontainer is 11.4 cm. When the cylinder is rotating at 1.36 revolutions per second, what is the magnitude of the centripetal acceleration of the outer wall?arrow_forwardA block (mass = 3.0kg) is hanging from a mass-less string that is wrapped around a pulley. The string is 120cm long. Initially the string was wrapped fully and the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. Assume that the radius of the cord around the pulley remains constant at a value of 0.050m during the block's descent. The mass rolls from rest down to the end of the string. Find the transnational kinetic energy. Find the rotational kinetic energy. Find the angular speed.arrow_forward
- A small block of mass m2 hangs from a massless rope wrapped around a pulley with radius of R. The moment of inertia of the entire pulley is I = 4m2(R)². Another block m1=2m2 is connected to the outer cylinder of the pulley via a horizontal massless rope. The coefficient of kinetic friction between the block and the horizontal surface is µ; = (i.e. the frictional force is f = }mg). When m2 is released from rest, what is the angular acceleration a of the block and pulley system? T, m, T. m, Pick the correct answer 最 3 g 20arrow_forwardA puck of mass m = 1.10 kg slides in a circle of radius r = 19.0 cm on a frictionless table while attached to a hanging cylinder of mass M = 2.20 kg by a cord through a hole in the table. What speed keeps the cylinder at rest? m/sarrow_forwardA turntable (disk) of radius r= 25.0 cm and rotational inertia 0.395 kg · m rotates with an angular speed of 3.04 rad/s around a frictionless, vertical axle. A wad of clay of mass m = 0.254 kg drops onto and sticks to the edge of the turntable. What is the new angular speed of the turntable? rad/sarrow_forward
- A child's top is held in place upright on a frictionless surface. The axle has a radius of r = 4.21 mm. Two strings are wrapped around the axle, and the top is set spinning by applying T = 3.15 N of constant tension to each string. If it takes 0.440 s for the string to unwind, how much angular momentum L does the top acquire? Assume that the strings do not slip as the tension is applied. L = kg.m² S Point P is located on the outer surface of the top, a distance h = 33.0 mm above the ground. The angle that the outer surface of the top makes with the rotation axis of the top is 0 = 17.0°. If the final tangential speed v₁ of point P is 1.75 m/s, what is the top's moment of inertia I? I = kg.m² T 2r R 2r P T Tarrow_forwardA horizontal circular platform rotates counterclockwise about its axis at the rate of 0.961 rad/s. You, with a mass of 66.5 kg, walk clockwise around the platform along its edge at the speed of 1.11 m/s with respect to the platform. Your 20.5 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 18.3 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 92.9 kg and radius 1.93 m. Calculate the total angular momentum of the system.arrow_forwardA horizontal force of 170 N is required to push a 180-kg refrigerator across a level linoleum floor. The refrigerator rolls on four 50-mm-diameter plastic wheels. Neglect all friction except rolling resistance and determine the coefficient of rolling friction between the plastic wheels and the linoleum floor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON