Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 23P
(a)
To determine
To demonstrate the top tray in the stack can always be at the same height above the floor.
(b)
To determine
The spring constant each spring for the dispenser to function.
(c)
To determine
The quantitiy that have no use in the experiment.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on
the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support
any additional load. Suppose the leaf spring constant is 4.90 x 105 N/m, the helper spring constant is 3.60 x 105 N/m, and yo = 0.500 m.
Truck body
Axle
(a) What is the compression of the leaf spring for a load of 4.70 x 105 N?
0.87
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) How much work is done in compressing the springs?
0.855
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by
distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 4.80 x 10° N/m, the helper spring constant is 3.80 x 10° N/m, and Y. = 0.500 m.
Truck body
-"Helper"
spring
Main leaf
spring
Axle
(a) What is the compression of the leaf spring for a load of 5.10 x 10° N?
0 81
(b) How much work is done in compressing the springs?
1 34
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
Need Help?
Read It
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring
mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and
then helps to support any additional load. Suppose the leaf spring constant is 5.20 x 105 N/m, the helper spring constant is 3.70 x 105 N/m,
and y, = 0.500 m.
Truck body
-"Helper"
spring
Main leaf
spring
Axle
(a) What is the compression of the leaf spring for a load of 4.20 x 105 N?
m
(b) How much work is done in compressing the springs?
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 6.2 - Prob. 6.1QQCh. 6.2 - Prob. 6.2QQCh. 6.3 - Which of the following statements is true about...Ch. 6.4 - Prob. 6.4QQCh. 6.5 - A dart is inserted into a spring-loaded dart gun...Ch. 6.6 - Choose the correct answer. The gravitational...Ch. 6.6 - A ball is connected to a light spring suspended...Ch. 6.8 - What does the slope of a graph of U(x) versus x...Ch. 6 - Alex and John are loading identical cabinets onto...Ch. 6 - Prob. 2OQ
Ch. 6 - Prob. 3OQCh. 6 - Prob. 4OQCh. 6 - Prob. 5OQCh. 6 - As a simple pendulum swings back and forth, the...Ch. 6 - A block of mass m is dropped from the fourth floor...Ch. 6 - If the net work done by external forces on a...Ch. 6 - Prob. 9OQCh. 6 - Prob. 10OQCh. 6 - Prob. 11OQCh. 6 - Prob. 12OQCh. 6 - Prob. 13OQCh. 6 - Prob. 14OQCh. 6 - Prob. 15OQCh. 6 - An ice cube has been given a push and slides...Ch. 6 - Prob. 1CQCh. 6 - Discuss the work done by a pitcher throwing a...Ch. 6 - A certain uniform spring has spring constant k....Ch. 6 - (a) For what values of the angle between two...Ch. 6 - Prob. 5CQCh. 6 - Cite two examples in which a force is exerted on...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQCh. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 1PCh. 6 - A raindrop of mass 3.35 105 kg falls vertically...Ch. 6 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 6 - Prob. 4PCh. 6 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - A force F=(6j2j)N acts on a particle that...Ch. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - The force acting on a particle varies as shown in...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - When a 4.00-kg object is hung vertically on a...Ch. 6 - A small particle of mass m is pulled to the top of...Ch. 6 - A light spring with spring constant 1 200 N/m is...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - The force acting on a particle is Fx = (8x 16),...Ch. 6 - A force F=(4xi+3yj), where F is in newtons and x...Ch. 6 - Prob. 26PCh. 6 - A 6 000-kg freight car rolls along rails with...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - A 3.00-kg object has a velocity (6.00i1.00j)m/s....Ch. 6 - Prob. 32PCh. 6 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - A 4.00-kg particle moves from the origin to...Ch. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - A baseball outfielder throws a 0.150-kg baseball...Ch. 6 - Why is the following situation impossible? In a...Ch. 6 - An inclined plane of angle = 20.0 has a spring of...Ch. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A light spring with spring constant 1 200 N/m is hung from an elevated support. From its lower end hangs a second light spring, which has spring constant 1 800 N/m. An object of mass 1.50 kg is hung at rest from the lower end of the second spring. (a) Find the total extension distance of the pair of springs. (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as in series.arrow_forwardA small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. The coefficient of kinetic friction between the box and the track is 0.35 along the entire track. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d. c. Compare your answer with your answer to Problem 50 if you did that problem.arrow_forwardA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P8.35. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P8.35arrow_forward
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardThe spring constant of an automotive suspension spring increases with increasing load due to a spring coil that is widest at the bottom, smoothly tapering to a smaller diameter near the top. The result is a softer ride on normal road surfaces from the wider coils, but the car does not bottom out on bumps because when the lower coils collapse, the stiffer coils near the top absorb the load. For such springs, the force exerted by the spring can be empirically found to be given by F = axb. For a tapered spiral spring that compresses 12.9 cm with a 1 000-N load and 31.5 cm with a 5 000-N load, (a) evaluate the constants a and b in the empirical equation for F and (b) find the work needed to compress the spring 25.0 cm.arrow_forwardA block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forward
- A small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. Kinetic friction between the box and the track is negligible on the hill, but the coefficient of kinetic friction between the box and the horizontal parts of track is 0.35. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d.arrow_forwardA childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forwardRubber tends to be nonlinear as an elastic material. Suppose a particular rubber band exerts a restoring force given by Fx(x) = Ax Bx2, where the empirical constants are A = 14 N/m and B = 3.3 N/m2 so that Fx is in newtons when x is in meters. Calculate the change in elastic potential energy of the rubber band when an external force stretches it from x = 0 to x = 0.20 m.arrow_forward
- To give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forwardIn a laboratory experiment, 1 a block of mass M is placed on a frictionless table at the end of a relaxed spring of spring constant k. 2 The spring is compressed a distance x0 and 3 a small ball of mass m is launched into the block as shown in Figure P11.22. The ball and block stick together and are projected off the table of height h. Find an expression for the horizontal displacement of the ballblock system from the end of the table until it hits the floor in terms of the parameters given. FIGURE P11.22arrow_forwardA light spring with spring constant 1 200 N/m is hung from an elevated support. From its lower end hangs a second light spring, which has spring constant 1 800 N/m. An object of mass 1.50 kg is hung at rest from the lower end of the second spring, (a) Find the total extension distance of the pair of springs, (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as in series.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY