College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 17P
A 1500 kg car drives around a flat 200-m-diameter circular track at 25 m/s. What are the magnitude and direction of the net force on the car? What causes this force?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:59
Students have asked these similar questions
A 1600 kg car drives around a flat 210-m diameter circular track at 25m/s. What is the magnitude of the net force on the car?
The passengers in a roller coaster feel 42 % heavier than their true weight as the car goes through a loop with a 30 m radius of curvature. What is the car's speed at the bottom of the loop? Use g = 10 N/kg. Hint: How heavy some one feels is another name for normal force. The problem therefore tells you the normal force. If you know weight and normal force, you can determine centripetal acceleration. You can substitute a value for mass if you wish.
A 1000 kg race car is traveling at 60 m/s around a curved section of track that has a radius of 300 m.
a) what is the cars centripetal acceleration?
b)
Chapter 6 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 6 - A cyclist goes around a level, circular track at...Ch. 6 - In uniform circular motion, which of the following...Ch. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Large birds like pheasants often walk short...Ch. 6 - When you drive fast on the highway with muddy...Ch. 6 - A ball on a string moves in a vertical circle as...Ch. 6 - Give an everyday example of circular motion for...Ch. 6 - Give an everyday example of circular motion for...Ch. 6 - Prob. 10CQ
Ch. 6 - A car coasts at a constant speed over a circular...Ch. 6 - In Figure Q6.11, at the instant shown, is the...Ch. 6 - Riding in the back of a pickup truck can be very...Ch. 6 - Playground swings move through an arc of a circle....Ch. 6 - Variation in your apparent weight is desirable...Ch. 6 - Prob. 16CQCh. 6 - Why is it impossible for an astronaut inside an...Ch. 6 - If every object in the universe feels an...Ch. 6 - A mountain climbers weight is slightly less on the...Ch. 6 - Prob. 20CQCh. 6 - A ball on a string moves around a complete circle,...Ch. 6 - As seen from above, a car rounds the curved path...Ch. 6 - As we saw in the chapter, wings on race cars push...Ch. 6 - Prob. 24MCQCh. 6 - Prob. 25MCQCh. 6 - The cylindrical space station in Figure Q6.25, 200...Ch. 6 - The radius of Jupiter is 11 times that of earth,...Ch. 6 - A newly discovered planet has twice the mass and...Ch. 6 - Suppose one night the radius of the earth doubled...Ch. 6 - Currently, the moon goes around the earth once...Ch. 6 - Two planets orbit a star. You can ignore the...Ch. 6 - A 5.0-m-diameter merry-go-round is turning with a...Ch. 6 - Prob. 2PCh. 6 - An old-fashioned LP record rotates at 3313rpm. a....Ch. 6 - A typical hard disk in a computer spins at 5400...Ch. 6 - Prob. 5PCh. 6 - The horse on a carousel is 4.0 m from the central...Ch. 6 - The radius of the earths very nearly circular...Ch. 6 - Modern wind turbines are larger than they appear,...Ch. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - A typical running track is an oval with...Ch. 6 - Figure P6.13 is a birds-eye view of particles on a...Ch. 6 - In short-track speed skating, the track has...Ch. 6 - Prob. 15PCh. 6 - A cyclist is rounding a 20-m-radius curve at 12...Ch. 6 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 6 - A fast pitch softball player does a windmill...Ch. 6 - Prob. 19PCh. 6 - A wind turbine has 12,000 kg blades that are 38 m...Ch. 6 - Youre driving your pickup truck around a curve...Ch. 6 - Prob. 22PCh. 6 - Gibbons, small Asian apes, move by brachiation,...Ch. 6 - The passengers in a roller coaster car feel 50%...Ch. 6 - Prob. 25PCh. 6 - A roller coaster car is going over the top of a...Ch. 6 - As a roller coaster car crosses the top of a...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - A satellite orbiting the moon very near the...Ch. 6 - Spacecraft have been sent to Mars in recent years....Ch. 6 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 6 - The gravitational force of a star on an orbiting...Ch. 6 - The free-fall acceleration at the surface of...Ch. 6 - What is the ratio of the suns gravitational force...Ch. 6 - Prob. 38PCh. 6 - In recent years, astronomers have found planets...Ch. 6 - Prob. 40PCh. 6 - a. What is the gravitational force of the sun on...Ch. 6 - What is the value of g on the surface of Saturn?...Ch. 6 - What is the free-fall acceleration at the surface...Ch. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Planet X orbits the star Omega with a year that is...Ch. 6 - The International Space Station is in a...Ch. 6 - An earth satellite moves in a circular orbit at a...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - How fast must a plane fly along the earths equator...Ch. 6 - Prob. 55GPCh. 6 - A 75 kg man weighs himself at the north pole and...Ch. 6 - Prob. 57GPCh. 6 - Prob. 58GPCh. 6 - Prob. 60GPCh. 6 - Prob. 61GPCh. 6 - Prob. 62GPCh. 6 - Prob. 63GPCh. 6 - Prob. 64GPCh. 6 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 6 - In an old-fashioned amusement park ride,...Ch. 6 - The 0.20 kg puck on the frictionless, horizontal...Ch. 6 - While at the county fair, you decide to ride the...Ch. 6 - A car drives over the top of a hill that has a...Ch. 6 - The ultracentrifuge is an important tool for...Ch. 6 - A sensitive gravimeter at a mountain observatory...Ch. 6 - Prob. 72GPCh. 6 - Planet Z is 10,000 km in diameter. The free-fall...Ch. 6 - How long will it take a rock dropped from 2.0 m...Ch. 6 - A 20 kg sphere is at the origin and a 10 kg sphere...Ch. 6 - a. At what height above the earth is the free-fall...Ch. 6 - Mars has a small moon, Phobos, that orbits with a...Ch. 6 - You are the science officer on a visit to a...Ch. 6 - Europa, a satellite of Jupiter, is believed to...Ch. 6 - The direction of the net force on the craft is A....Ch. 6 - Suppose a spacecraft orbits the moon in a very...Ch. 6 - How much time does it take for the spacecraft to...Ch. 6 - The material that comprises the side of the moon...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. (II) A 0.25-kg mass at the end of a spring oscillates 2.2 times per second with an amplitude of 0.15 m. Det...
Physics: Principles with Applications
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the...
University Physics Volume 1
A block on a frictionless table is connected to a spring as shown. The spring is initially unstretched. The blo...
Tutorials in Introductory Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
When is your weight greater than mg?
Conceptual Integrated Science
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . A hang glider and its pilot have a total mass equal to 120 kg. While executing a 360° turn, the glider moves in a circle with an 8-m radius. The glider’s speed is 10 m/s. (a) What is the net force on the hang glider? (b) What is the acceleration?arrow_forwardWhich of the following is impossible for a car moving in a circular path? Assume that the car is never at rest. (a) The car has tangential acceleration but no centripetal acceleration. (b) The car has centripetal acceleration but no tangential acceleration. (c) The car has both centripetal acceleration and tangential acceleration.arrow_forwardA racecar is driven on a horizontal circular track at a constant speed of 20.0 m/s. The radius of the track is 100.0 meters and the mass of the car is 800.0 kg. a. Does the racecar accelerate and if it does in what direction is the acceleration? EXPLAIN! b. What is the centripetal force on the racecar? c. What is the value of the static frictional force between the tires and the track? d. Explain what (and why) the driver of the racecar should do if it started to rain in order to keep driving in a circle. Make sure to explain what happens to the frictional force when it begins to rain and make sure to explain how the driver’s action changes the centripetal force on the racecar.arrow_forward
- 2. A .4 kg ball attached to the end of a horizontal cord is rotated in a circle of radius 1 m on a frictionless horizomtal surface. If the cord will break when the tension exceeds 90 N, what is the maximum speed the cord can have? M is the normalarrow_forwardmm.2 Humpback whales sometimes catch fish by swimming rapidly in a circle, blowing a curtain of bubbles that confuses a school of fish and traps it in a small area, where the whales can easily catch and eat them. Suppose a 25,000- kg humpback whale swims at 2.3 m/s in a circle of radius 8.6 m . What centripetal force must the whale generate?arrow_forwardA 1.44 x 104 N automobile is moving with a constant speed of 6 km/h on a curve of 30 m radius.a. What is its acceleration?b. What is the centripetal force on the automobile?c. What supplies this force?arrow_forward
- A 2.0kg ball swings in a vertical circle on the end of an 80cm long string. The tension in the string is 20N when its angle from the highest point on the circle, 0, is 30deg. a) What is the ball's speed when 0-30deg? b) What are the magnitude and direction of the ball's acceleration when 0=30deg?arrow_forwardA 200-grams wooden ball is tied to the end of the string 60 cm long and passes through the steel tube. The ball rotates in horizontal circle at constant speed and complete 10 revolutions in 5 seconds. Calculate: a.The centripetal acceleration on the ball (in m/s). b.The tension force in the string (in Newton).arrow_forwardTwo wires are tied to the 400 g sphere. The sphere revolves in a horizontal circle at a constant speed of 7.10 m/s. What is the tension of the upper wire? What is the tension of the lower wire?arrow_forward
- A disk of mass m=1.50 kg slides on a frictionless table where it makes a circle of radius r=20.0 cm. This disk is connected to a hanging mass of M=2.50 kg by a rope, see figure. M a. Determine the speed of the disk so that the hanging mass M remains at rest. b. Determine the period of the disk and the centripetal acceleration of the disk.arrow_forwardTwo wires are tied to the 400 g sphere shown in the figure. The sphere revolves in a horizontal circle at a constant speed of 7.70 m/. What is the tension in the upper wire? What is the tension in the lower wire?arrow_forwardE6. A car with a mass of 1300 kg is moving around a curve with a radius of 35 m at a constant speed of 15 m/s (about 35 MPH). a. What is the centripetal acceleration of the car? b. What is the magnitude of the force required to produce this centripetal acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY