THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.5, Problem 171RP
To determine
The required flow rate of air, in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A classroom type room with 45students taking an exam in thermodynamics is expected to release a body heat of about 8kJ/hr per person. In order to compensate this heat dissipation, an air-conditioning unit is to be installed. If specific heat capacity and density of air is 1.0062kJ/kg-K and 1.2kg/m3, determine the volume of air flow required in examination room if the air is to be cooled down from 290C to 200C.
a. 8.5177Li/s b. 9.1262Li/s c. 9.2022Li/s d. 9.0501Li/s
In adiabatic process, the
system has
Q=max. value O
W=0 O
Q=0 O
U-0 O
*
A vertical piston-cylinder device contains water and is
being heated on top of a range. During the process, 65
Btu of heat is transferred to the water, and heat losses
from the side walls amount to 8 Btu. The piston rises as
a result of evaporation, and 5 Btu of work is done by the
vapor. Determine the change in the energy of the water
.for this process
61 Btu O
52 Btu
55 Btu
60 Btu
*
hp compressor in a facility that operates at full load-75
for 2500 h a year is powered by an electric motor that
has an efficiency of 93 percent. If the unit cost of
electricity is $0.11/kWh, the annual electricity cost of this
:compressor is
16,540 $
19,180 $ O
5,380 $ O
14,300 $ O
barometric pressure or 1 atmospheric 1
pressure is equal to
1.019 kgf/cm2
1 kgf/cm2
0.9 kgf/cm2
0 kgf/cm2 O
A classroom that normally contains 40 people is to be air-conditioned with window air-conditioning units of 5-kW cooling capacity. A person at rest may be assumed to dissipate heat at a rate of about 360kJ/h. There are 10 light bulbs in the room, each with a rating of 100W. The rate of heat transfer to the classroom through the walls and the windows is estimated to be 15,000kJ/h. If the room air is to be maintained at a constant temperature of 21°C, determine the number of window air-conditioning units required.
Chapter 5 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
Ch. 5.5 - Name four physical quantities that are conserved...Ch. 5.5 - Define mass and volume flow rates. How are they...Ch. 5.5 - Does the amount of mass entering a control volume...Ch. 5.5 - Consider a device with one inlet and one outlet....Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Air enters a 16-cm-diameter pipe steadily at 200...Ch. 5.5 - A steam pipe is to transport 200 lbm/s of steam at...Ch. 5.5 - A garden hose attached with a nozzle is used to...Ch. 5.5 - A steady-flow compressor is used to compress...Ch. 5.5 - Air enters the 1-m2 inlet of an aircraft engine at...
Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - Air enters a nozzle steadily at 2.21 kg/m3 and 40...Ch. 5.5 - A spherical hot-air balloon is initially filled...Ch. 5.5 - Water enters the constant 130-mm inside-diameter...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - A hair dryer is basically a duct of constant...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - What are the different mechanisms for transferring...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - An air compressor compresses 6 L of air at 120 kPa...Ch. 5.5 - A house is maintained at 1 atm and 24C, and warm...Ch. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - How is a steady-flow system characterized?Ch. 5.5 - Can a steady-flow system involve boundary work?Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Steam enters a nozzle at 400C and 800 kPa with a...Ch. 5.5 - Air at 80 kPa and 127C enters an adiabatic...Ch. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - Air enters an adiabatic nozzle steadily at 300...Ch. 5.5 - Consider an adiabatic turbine operating steadily....Ch. 5.5 - Prob. 42PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - Air is expanded from 1000 kPa and 600C at the...Ch. 5.5 - Prob. 45PCh. 5.5 - Refrigerant-134a enters a compressor at 100 kPa...Ch. 5.5 - Refrigerant-134a enters a compressor at 180 kPa as...Ch. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 5.5 - An adiabatic air compressor compresses 10 L/s of...Ch. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Steam flows steadily into a turbine with a mass...Ch. 5.5 - Air is compressed by an adiabatic compressor from...Ch. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - A portion of the steam passing through a steam...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Someone claims, based on temperature measurements,...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Prob. 69PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 71PCh. 5.5 - Refrigerant-134a at 700 kPa, 70C, and 8 kg/min is...Ch. 5.5 - Hot and cold streams of a fluid are mixed in a...Ch. 5.5 - A hot-water stream at 80C enters a mixing chamber...Ch. 5.5 - Water at 80F and 20 psia is heated in a chamber by...Ch. 5.5 - An adiabatic open feedwater heater in an electric...Ch. 5.5 - Cold water (cp = 4.18 kJ/kgC) leading to a shower...Ch. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - An open feedwater heater heats the feedwater by...Ch. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - A well-insulated shell-and-tube heat exchanger is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two streams of water are mixed in an insulated...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The ducts of an air heating system pass through an...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Saturated liquid water is heated in a steady-flow...Ch. 5.5 - Water enters the tubes of a cold plate at 70F with...Ch. 5.5 - Prob. 96PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - A desktop computer is to be cooled by a fan. The...Ch. 5.5 - Prob. 99PCh. 5.5 - A 4-m 5-m 6-m room is to be heated by an...Ch. 5.5 - A house has an electric heating system that...Ch. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 103PCh. 5.5 - Prob. 104PCh. 5.5 - Argon steadily flows into a constant-pressure...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - An insulated rigid tank is initially evacuated. A...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 115PCh. 5.5 - A 2-m3 rigid tank initially contains air at 100...Ch. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 118PCh. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A 4-L pressure cooker has an operating pressure of...Ch. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - A 0.05-m3 rigid tank initially contains...Ch. 5.5 - A 0.12-m3 rigid tank contains saturated...Ch. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - Prob. 127PCh. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - A pistoncylinder device initially contains 0.6 kg...Ch. 5.5 - The weighted piston of the device shown in Fig....Ch. 5.5 - Prob. 136RPCh. 5.5 - Prob. 137RPCh. 5.5 - Prob. 138RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - Prob. 140RPCh. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Refrigerant-134a enters an adiabatic compressor at...Ch. 5.5 - Prob. 144RPCh. 5.5 - Prob. 145RPCh. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 149RPCh. 5.5 - Prob. 150RPCh. 5.5 - Prob. 151RPCh. 5.5 - Prob. 152RPCh. 5.5 - Prob. 153RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Determine the power input for a compressor that...Ch. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - In a dairy plant, milk at 4C is pasteurized...Ch. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - Prob. 164RPCh. 5.5 - Prob. 165RPCh. 5.5 - Prob. 166RPCh. 5.5 - The average atmospheric pressure in Spokane,...Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Prob. 169RPCh. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - Prob. 171RPCh. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - Prob. 176RPCh. 5.5 - Prob. 177RPCh. 5.5 - Steam enters a turbine steadily at 7 MPa and 600C...Ch. 5.5 - Reconsider Prob. 5178. Using appropriate software,...Ch. 5.5 - Prob. 180RPCh. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - A pistoncylinder device initially contains 2 kg of...Ch. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - A pressure cooker is a pot that cooks food much...Ch. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - Prob. 189RPCh. 5.5 - Consider an evacuated rigid bottle of volume V...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 195FEPCh. 5.5 - Prob. 196FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Refrigerant-134a at 1.4 MPa and 70C is throttled...Ch. 5.5 - Prob. 202FEPCh. 5.5 - Prob. 203FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...Ch. 5.5 - Saturated water vapor at 40C is to be condensed as...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. An engine rejects 200kW when running at a thermal efficiency of 22%. The calorific value of the fuel used is 42MJ/kg. Determine (i) the heat received by the engine; (ii) the power output in kW, and (iii) the mass of fuel used/h 2. A 20kg block of iron at 50°C is dropped into an insulated tank which contains 0.5m of water at 25°C. If the specific heat of the iron, Cpiron, is 0.45 kJ/kg°C and the specific heat of the water, Cpwater, is 4.184 kJ/kg'C. Determine: (a) mass of the water; s) (b) the temperature at which thermal equilibrium is reached, and For equilibrium AUsystem-AUron+AUwater 0 (c) the amount of energy added to the water. AU =mwaterCpwater (tequili"twater) water The barometer of a mountain hiker reads 910mbars at the beginning of the hike and 710mbars at the end. 3. (а) Determine the vertical distance climbed. You can assume an average air density of 1.2kg/m 4.arrow_forwardA storeroom of dimensions 10 x 8 x 3 m is maintained at 21oC and 50% RH and has a total heating load of 10 kW. The room is provided with 8 air changes per hour when ambient conditions are 30oC and 60% RH. Determine: a. the total cooling rate b. moisture removed per hour c. the minimum diameter of the fresh air duct so that the velocity in the duct does not exceed 3 m/sarrow_forwardBefore the widespread use of mechanical refrigeration, cooling was provided by ice, which was delivered by icemen and stored in an icebox. In a current application, blocks of ice at Tice = 32°F with a total mass of mice = 500 lbm are placed in a large food-storage icebox that is used to keep food at Tfood = 45°F on a day in which the outdoor temperature is Tamb = 78°F. The rate of heat loss through the walls of the ice box is Q = 2900 Btu/hr. a.) Estimate the amount of time the ice it will take this ice to melt. b.) Compare the rate of cooling provided in ton units to the mass of ice in tons. c.) Define and calculate efficiency for this process. d.) Determine the change in exergy of the ice in this process. e.) Calculate the Second-Law efficiency for this process.arrow_forward
- A water tube boiler has a capacity of 1000 kg/hr of steam. The factor of evaporation is 1.3, boiler rating is 200%, boiler efficiency is 5%, heating surface area is 0.91 m2/boiler Hp, and the heating value of fuel is 18,400 Kcal/kg. The total coal available in the bunker is 50,000 kg. Determine total number of hours to consume the available fuel.arrow_forwardA summer air conditioning system (schematic shown below) consisting of a cooling coil and a reheat coil, supplies air to a space maintained at 26°C db-temperature and 19°C wb-temperature. The sensible and latent heat loads on the space are both 18 kW and 18 kW, respectively. The conditions of the air leaving the cooling coil are 10°C db-temperature and 90% relative humidity. The pressure is constant at 101.325 kPa. About 30% of the return air is replaced with outdoor air at 30°C db-temperature and 80% RH. Determine: The db-temperature of supply air in % The dry-air mass flow rate of supply air in kg/sarrow_forwardAn atmospheric cooling tower is to provide cooling for the jacket of water of a four-stroke, 800 kW Diesel generator. The cooling tower efficiency is 60% at a temperature approach of 10C. If the ambient air has a relative humidity of 70% and dry bulb temperature of 32C, determine (a) the cooling water supplied to the diesel engine in liters per hour and (b) mass of air in kg/s generator efficiency is 97% useful = 30% and cooling loss = 25%arrow_forward
- The Refrigerating Effect of 94 tons of refrigeration is 127.75 kJ/kg. Determine the mass flow rate of the refrigerant.arrow_forwardA 15'x12'x15'(LXWXH) room with temperature at 70°F dB and 50°F wB needs SA with air change rate 10 times/hr. If SA is 100% from outside air (temperature 50°F dB and 40°F wB), determine the required heating energy (MBtu) to keep the room temperature during 1/2 hours. (Average air specific heat at constant pressure is 0.24 Btu/lbm.R and density is 0.07639 lbm/ft')arrow_forwardA gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hr Use four (4) decimal places in your solution and answer.arrow_forward
- A gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hrarrow_forwardA rotary dryer fired with bunker oil having HHV = 10, 000 kcal/kg is to produce 20 MT/hr of dried sand with 0.5% moisture from wet feed containing 7% moisture. Specific heat of sand is 0.21 BTU/lb-°F. Temperature of wet sand is 30 °C and temperature of dried product is 115 °C. If the heater requirement, Qh = 2, 500 kW, calculate the density of bunker oil in kg per m3 ifspecific gravity of bunker oil is 0.8 and dryer efficiency is 70%.arrow_forwardExplain using the concept of Ideal gas laws on how do you make a cold body, and how air conditioners and refrigerators work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY