Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.2, Problem 2E
Three balanced coins are tossed independently. One of the variables of interest is Y1, the number of heads. Let Y2 denote the amount of money won on a side bet in the following manner. If the first head occurs on the first toss, you win $1. If the first head occurs on toss 2 or on toss 3 you win $2 or $3, respectively. If no heads appear, you lose $1 (that is, win −$1).
- a Find the joint
probability function for Y1 and Y2. - b What is the probability that fewer than three heads will occur and you will win $1 or less? [That is, find F(2, 1).]
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
This game is called “Get Negative”. Roll two dice (record these in the order you roll them), and then do then do the following: take the first number rolled and subtract 2 times the second number rolled. Regardless of who rolls, Player A gets 3 points if the product is greater than or equal to 0 (i.e. it is zero or positive); Otherwise Player B gets 1 points. The players may or may not take turns rolling the dice as it does not matter who is rolling. Any player may score on any roll, and every roll will result in a score.
Play the game by rolling the dice 25 times. For each turn, keep a record of both dice and the resulting answer and the points scored, according to the rules above. Tally the points and calculate the final score for each player. Remember, someone gets a point for each turn, depending on the numbers rolled. (One does not have to be rolling to receive the points.) (Note: you may test the game by yourself by doing all of the 25 rolls yourself and just giving the…
This game is called “Get Negative”. Roll two dice (record these in the order you roll them), and then do then do the following: take the first number rolled and subtract 2 times the second number rolled. Regardless of who rolls, Player A gets 3 points if the product is greater than or equal to 0 (i.e. it is zero or positive); Otherwise Player B gets 1 points. The players may or may not take turns rolling the dice as it does not matter who is rolling. Any player may score on any roll, and every roll will result in a score.
Play the game by rolling the dice 25 times. For each turn, keep a record of both dice and the resulting answer and the points scored, according to the rules above. Tally the points and calculate the final score for each player. Remember, someone gets a point for each turn, depending on the numbers rolled. (One does not have to be rolling to receive the points.) (Note: you may test the game by yourself by doing all of the 25 rolls yourself and just giving the…
Three balanced coins are tossed independently. One of the variables of interest is Y₁, the number
of heads. Let Y₂ denote the amount of money won on a side bet in the following manner. If the
first head occurs on the first toss, you win $1. If the first head occurs on toss 2 or on toss 3 you
win $2 or $3, respectively. If no heads appear, you lose $1 (that is, win -$1).
a Find the joint probability function for Y₁ and Y2.
b
What is the probability that fewer than three heads will occur and you will win $1 or less?
[That is, find F(2, 1).]
Chapter 5 Solutions
Mathematical Statistics with Applications
Ch. 5.2 - Contracts for two construction jobs are randomly...Ch. 5.2 - Three balanced coins are tossed independently. One...Ch. 5.2 - Of nine executives in a business firm, four are...Ch. 5.2 - Given here is the joint probability function...Ch. 5.2 - Refer to Example 5.4. The joint density of Y1, the...Ch. 5.2 - Prob. 6ECh. 5.2 - Let Y1 and Y2 have joint density function...Ch. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - An environmental engineer measures the amount (by...
Ch. 5.2 - Suppose that Y1 and Y2 are uniformly distributed...Ch. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - The management at a fast-food outlet is interested...Ch. 5.2 - Let Y1 and Y2 denote the proportions of time (out...Ch. 5.2 - Let (Y1, Y2) denote the coordinates of a point...Ch. 5.2 - Prob. 18ECh. 5.3 - In Exercise 5.1, we determined that the joint...Ch. 5.3 - Refer to Exercise 5.2. a Derive the marginal...Ch. 5.3 - In Exercise 5.3, we determined that the joint...Ch. 5.3 - In Exercise 5.4, you were given the following...Ch. 5.3 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - In Exercise 5.10, we proved that...Ch. 5.3 - Prob. 29ECh. 5.3 - In Exercise 5.12, we were given the following...Ch. 5.3 - In Exercise 5.13, the joint density function of Y1...Ch. 5.3 - Prob. 32ECh. 5.3 - Suppose that Y1 is the total time between a...Ch. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Let Y1 denote the weight (in tons) of a bulk item...Ch. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.4 - Let Y1 and Y2 have joint density function f(y1,...Ch. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - In Exercise 5.3, we determined that the joint...Ch. 5.4 - In Exercise 5.4, you were given the following...Ch. 5.4 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - In Exercise 5.12, we were given the following...Ch. 5.4 - Prob. 57ECh. 5.4 - Suppose that the random variables Y1 and Y2 have...Ch. 5.4 - If Y1 is the total time between a customers...Ch. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Let Y1 and Y2 be independent exponentially...Ch. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.4 - Let F1(y1) and F2(y2) be two distribution...Ch. 5.4 - Prob. 67ECh. 5.4 - Prob. 68ECh. 5.4 - The length of life Y for fuses of a certain type...Ch. 5.4 - A bus arrives at a bus stop at a uniformly...Ch. 5.4 - Prob. 71ECh. 5.6 - In Exercise 5.1, we determined that the joint...Ch. 5.6 - Prob. 73ECh. 5.6 - Refer to Exercises 5.6, 5.24, and 5.50. Suppose...Ch. 5.6 - Prob. 75ECh. 5.6 - Prob. 76ECh. 5.6 - Prob. 77ECh. 5.6 - Prob. 78ECh. 5.6 - Suppose that, as in Exercise 5.11, Y1 and Y2 are...Ch. 5.6 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.6 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.6 - In Exercise 5.38, we determined that the joint...Ch. 5.6 - Prob. 83ECh. 5.6 - In Exercise 5.62, we considered two individuals...Ch. 5.6 - Prob. 85ECh. 5.6 - Prob. 86ECh. 5.6 - Prob. 87ECh. 5.6 - Prob. 88ECh. 5.7 - In Exercise 5.1, we determined that the joint...Ch. 5.7 - Prob. 90ECh. 5.7 - In Exercise 5.8, we derived the fact that...Ch. 5.7 - Prob. 92ECh. 5.7 - Suppose that, as in Exercises 5.11 and 5.79, Y1...Ch. 5.7 - Prob. 94ECh. 5.7 - Prob. 95ECh. 5.7 - Prob. 96ECh. 5.7 - The random variables Y1 and Y2 are such that E(Y1)...Ch. 5.7 - Prob. 98ECh. 5.7 - Prob. 99ECh. 5.7 - Let Z be a standard normal random variable and let...Ch. 5.7 - Prob. 101ECh. 5.8 - A firm purchases two types of industrial...Ch. 5.8 - Prob. 103ECh. 5.8 - Prob. 104ECh. 5.8 - Prob. 105ECh. 5.8 - In Exercise 5.9, we determined that...Ch. 5.8 - In Exercise 5.12, we were given the following...Ch. 5.8 - If Y1 is the total time between a customers...Ch. 5.8 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.8 - Suppose that Y1 and Y2 have correlation...Ch. 5.8 - Prob. 111ECh. 5.8 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.8 - A retail grocery merchant figures that her daily...Ch. 5.8 - For the daily output of an industrial operation,...Ch. 5.8 - Prob. 115ECh. 5.8 - Prob. 116ECh. 5.8 - A population of N alligators is to be sampled in...Ch. 5.8 - Prob. 118ECh. 5.9 - A learning experiment requires a rat to run a maze...Ch. 5.9 - Prob. 120ECh. 5.9 - Refer to Exercise 5.117. Suppose that the number N...Ch. 5.9 - The weights of a population of mice fed on a...Ch. 5.9 - Prob. 123ECh. 5.9 - The typical cost of damages caused by a fire in a...Ch. 5.9 - When commercial aircraft are inspected, wing...Ch. 5.9 - Prob. 126ECh. 5.9 - Prob. 127ECh. 5.10 - Let Y1 and Y2 have a bivariate normal...Ch. 5.10 - Prob. 129ECh. 5.10 - Prob. 130ECh. 5.10 - Prob. 131ECh. 5.10 - Prob. 132ECh. 5.11 - Prob. 133ECh. 5.11 - Prob. 134ECh. 5.11 - In Exercise 5.41, we considered a quality control...Ch. 5.11 - In Exercise 5.42, the number of defects per yard...Ch. 5.11 - In Exercise 5.38, we assumed that Y1, the weight...Ch. 5.11 - Assume that Y denotes the number of bacteria per...Ch. 5.11 - Prob. 139ECh. 5.11 - Prob. 140ECh. 5.11 - Let Y1 have an exponential distribution with mean ...Ch. 5.11 - Prob. 142ECh. 5.11 - Prob. 143ECh. 5 - Prove Theorem 5.9 when Y1 and Y2 are independent...Ch. 5 - Prob. 145SECh. 5 - Prob. 146SECh. 5 - Two friends are to meet at the library. Each...Ch. 5 - Prob. 148SECh. 5 - Prob. 149SECh. 5 - Prob. 150SECh. 5 - The lengths of life Y for a type of fuse has an...Ch. 5 - In the production of a certain type of copper, two...Ch. 5 - Suppose that the number of eggs laid by a certain...Ch. 5 - In a clinical study of a new drug formulated to...Ch. 5 - Prob. 155SECh. 5 - Refer to Exercise 5.86. Suppose that Z is a...Ch. 5 - Prob. 157SECh. 5 - Prob. 158SECh. 5 - Prob. 159SECh. 5 - Prob. 160SECh. 5 - Suppose that we are to observe two independent...Ch. 5 - Prob. 162SECh. 5 - Prob. 163SECh. 5 - Prob. 164SECh. 5 - Prob. 165SECh. 5 - Prob. 166SECh. 5 - Prob. 167SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- If P(AB)=0.7, is it possible that P(BA)=0.6? Explainarrow_forwardFind the probability of each event. Getting 2 red eggs in a single scoop from a bucket containing 5 red eggs and 7 yellow eggsarrow_forwardOn a game show, a contestant is given the digits 3, 4, and 5 to arrange in the proper order to form the price of an appliance. If the contestant is correct, he or she wins the appliance. What is the probability of winning when the contestant knows that the price is at least $400?arrow_forward
- In a game, a man is paid P300 if he draws a jack or a queen and P500 if he draws a king or an ace from an ordinary deck of 52 playing cards. If he draws any other card, he loses. How much should he pay to play if the game is fair???? Give answers to 2 decimal places.arrow_forwardSuppose that you roll two dice. He will be paid five dollars if you wrote a double. You will not receive anything for any other outcome. How much should you be willing to pay for the privilege of rolling the dice? Answer choices: $0.28 $5.00 $0.14 $0.69 $0.83arrow_forwardSuppose you are playing a simple game that costs you $5 per play, where you draw one cardfrom a well-shuffled deck of 52 cards.• If the card is a spade, you receive $20. (You don’t get the $5 back.)• If it is not, then you do not receive any money. (You don’t get the $5 back.)Let X = the amount of money you have before playing a round of this “game”.Let Y = the amount of money you have after playing a round of this “game”.(a) Compute the conditional expectation of Y given X = $100.(b) You can also use the following variant of the Law of Total Expectation tocompute a conditional expectation:E(Z | X = x) = Summation(E(Z | Ai ∩ X = x)P (Ai | X = x)For this part, let Z = the amount of money you have after playing TWO rounds ofthis “game”. Use the above formula to calculate the conditional expectation of Z givenX = $100. (Note: the cards are well-shuffled again between rounds.)(c) Now suppose you get only $16 for drawing a spade. Compute the conditionalexpectation of Y (not Z) given X =…arrow_forward
- A professional organization is composed of x ECEs and 2x CES. If 6 ECEs are replaced by 6 CES, 1/6 of the members will be ECES. What is the value of x? A. 24 B. 36 C. 12 D. 18arrow_forwardhelp.arrow_forwardSuppose that you and a friend are playing cards and decide to make a bet. If your friend draws two spades in succession from a standard deck of 52 cards replacing the first card, you give him $50. Otherwise, he pays you $10. If the same bet was made 30 times, how much would you expect to win or lose? Round your answer to the nearest cent, if necessary.arrow_forward
- At roulette, there are 38 slots. A "column" consists of 12 of these slots. A column pays 2 to 1. So, if you risk $1 on a column and win, you net gain +2 dollars. If you lose, your net equals –1 dollar. Suppose you will play for 100 rounds and bet one dollar on a column each round. (You may enter values rounded to the nearest cent. Beware of carried rounding error.) Your average net gain per play equals 0.0526 dollars. The SD of your net gain per play equals 1.39 dollars. The expected value of your total net gain after 100 plays equals -5.3 dollars. The standard error of your total net gain after 100 plays equals 13.94 dollars.arrow_forwardYou pay $11 to play a game where you draw a numbered ball from a bucket containing 12 identical balls numbered 1-12. If you draw a ball numbered less than 3 (1.e. 1 or 2), you win a dollar amount equal to the number on the ball. If you draw a ball numbered with a multiple of 3, you win $3. If you draw a ball with any other number, you win nothing. Let X be your net winnings. Create the probability distribution for X. Enter the values of X in ascending order from left to right. All answers should be exact. X P(X) 0 1/2 Submit Answer X ✓ 1 1/12 X ✓ 2 1/12 X ✓ 3 1/3 X ✓arrow_forwardIn this game, two chips are placed in a cup. One chip has two red sides and one chip has a red and a blue side. The player shakes the cup and dumps out the chips. The player wins if both chips land red side up and loses if one chip lands red side up and one chip lands blue side up. The cost to play is $4 and the prize is worth $6. Is this a fair game. = Win a prize = Do not win a prize 1. Start by determining the probabilities for winning a prize and not winning a prize. Draw a probability tree to find the possible outcomes and the probabilities. After you draw the tree, check you work by clicking on the link below. Click to hide hint CHIP 1 CHIP 2 Probability P(Red) & P(Red) = P(R) - P(R) = 0.5. 0.5 = 0.25 0.5 0.5 0.5 P(Red) & P(Blue) = P(R) - P(B) = 0.5.0.5 = 0.25 Start 0.5 0.5 P(Red) & P(Red) = P(R) - P(R) = 0.5. 0.5 = 0.25 0.5 P(Red) & P(Blue) = P(R) - P(B) = 0.5.0.5 = 0.25arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License