Elements Of Modern Algebra
Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.1, Problem 2E

Exercises

Decide whether each of the following sets is a ring with respect to the usual operations of addition and multiplication. If it is not a ring, state at least one condition in Definition 5.1a that fails to hold.

The set of all integers that are multiples of 5 .

The set of all real numbers of the form m + n 3 with m

and n .

The set of all real numbers of the form a + b 5 3 , where a

and b

are rational numbers.

The set of all real numbers of the form a + b 5 3 + c 25 3 , where a , b

and c

are rational numbers.

The set of all positive real numbers.

The set of all complex numbers of the form m + n i , where m , n

(This set is known as the Gaussian integers.)

The set of all real numbers of the form m + n 2 with m E

and n .

The set of all real numbers of the form m + n 2 with m

and n E .

Blurred answer
Students have asked these similar questions
How long is a guy wire reaching from the top of a 15​-foot pole to a point on the ground 9-feet from the​ pole?       Question content area bottom Part 1 The guy wire is exactly feet long. ​(Type an exact​ answer, using radicals as​ needed.) Part 2 The guy wire is approximatelyfeet long. ​(Round to the nearest​ thousandth.)
Question 6 Not yet answered Marked out of 5.00 Flag question = If (4,6,-11) and (-12,-16,4), = Compute the cross product vx w k
Consider the following vector field v^-> (x,y): v^->(x,y)=2yi−xj What is the magnitude of the vector v⃗  located in point (13,9)? [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]

Chapter 5 Solutions

Elements Of Modern Algebra

Ch. 5.1 - Exercises Confirm the statements made in Example...Ch. 5.1 - Exercises 2. Decide whether each of the following...Ch. 5.1 - Exercises 3. Let Using addition and...Ch. 5.1 - Prob. 4ECh. 5.1 - Exercises 5. Let Define addition and...Ch. 5.1 - Exercises Work exercise 5 using U=a. Exercise5 Let...Ch. 5.1 - Exercises Find all zero divisors in n for the...Ch. 5.1 - Exercises 8. For the given values of , find all...Ch. 5.1 - Exercises Prove Theorem 5.3:A subset S of the ring...Ch. 5.1 - Exercises 10. Prove Theorem 5.4:A subset of the...Ch. 5.1 - Assume R is a ring with unity e. Prove Theorem...Ch. 5.1 - 12. (See Example 4.) Prove the right distributive...Ch. 5.1 - 13. Complete the proof of Theorem by showing that...Ch. 5.1 - Let R be a ring, and let x,y, and z be arbitrary...Ch. 5.1 - 15. Let and be elements of a ring. Prove that...Ch. 5.1 - 16. Suppose that is an abelian group with respect...Ch. 5.1 - If R1 and R2 are subrings of the ring R, prove...Ch. 5.1 - 18. Find subrings and of such that is not a...Ch. 5.1 - 19. Find a specific example of two elements and ...Ch. 5.1 - Prob. 20ECh. 5.1 - 21. Define a new operation of addition in by ...Ch. 5.1 - 22. Define a new operation of addition in by and...Ch. 5.1 - Let R be a ring with unity and S be the set of all...Ch. 5.1 - Prove that if a is a unit in a ring R with unity,...Ch. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Suppose that a,b, and c are elements of a ring R...Ch. 5.1 - Prob. 28ECh. 5.1 - 29. For a fixed element of a ring , prove that...Ch. 5.1 - Prob. 30ECh. 5.1 - Let R be a ring. Prove that the set S={...Ch. 5.1 - 32. Consider the set . a. Construct...Ch. 5.1 - Consider the set S={ [ 0 ],[ 2 ],[ 4 ],[ 6 ],[ 8...Ch. 5.1 - The addition table and part of the multiplication...Ch. 5.1 - 35. The addition table and part of the...Ch. 5.1 - Prob. 36ECh. 5.1 - 37. Let and be elements in a ring. If is a zero...Ch. 5.1 - An element x in a ring is called idempotent if...Ch. 5.1 - 39. (See Exercise 38.) Show that the set of all...Ch. 5.1 - 40. Let be idempotent in a ring with unity....Ch. 5.1 - 41. Decide whether each of the following sets is...Ch. 5.1 - 42. Let . a. Show that is a...Ch. 5.1 - 43. Let . a. Show that is a...Ch. 5.1 - 44. Consider the set of all matrices of the...Ch. 5.1 - Prob. 45ECh. 5.1 - 46. Let be a set of elements containing the unity,...Ch. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - An element a of a ring R is called nilpotent if...Ch. 5.1 - 50. Let and be nilpotent elements that satisfy...Ch. 5.1 - Let R and S be arbitrary rings. In the Cartesian...Ch. 5.1 - 52. (See Exercise 51.) a. Write out the...Ch. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.1 - Suppose R is a ring in which all elements x are...Ch. 5.2 - True or False Label each of the following...Ch. 5.2 - [Type here] True or False Label each of the...Ch. 5.2 - [Type here] True or False Label each of the...Ch. 5.2 - Label each of the following as either true or...Ch. 5.2 - Confirm the statements made in Example 3 by...Ch. 5.2 - Consider the set ={[0],[2],[4],[6],[8]}10, with...Ch. 5.2 - Consider the set...Ch. 5.2 - [Type here] Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - Examples 5 and 6 of Section 5.1 showed that P(U)...Ch. 5.2 - [Type here] Examples 5 and 6 of Section 5.1 showed...Ch. 5.2 - [Type here] 7. Let be the set of all ordered pairs...Ch. 5.2 - Let S be the set of all 2X2 matrices of the form...Ch. 5.2 - Work exercise 8 using be the set of all matrices...Ch. 5.2 - Work exercise 8 using S be the set of all matrices...Ch. 5.2 - Let R be the set of all matrices of the form...Ch. 5.2 - Prob. 12ECh. 5.2 - 13. Work Exercise 12 using , the Gaussian integers...Ch. 5.2 - 14. Letbe a commutative ring with unity in which...Ch. 5.2 - [Type here] 15. Give an example of an infinite...Ch. 5.2 - Prove that if a subring R of an integral domain D...Ch. 5.2 - If e is the unity in an integral domain D, prove...Ch. 5.2 - [Type here] 18. Prove that only idempotent...Ch. 5.2 - a. Give an example where a and b are not zero...Ch. 5.2 - 20. Find the multiplicative inverse of the given...Ch. 5.2 - [Type here] 21. Prove that ifand are integral...Ch. 5.2 - Prove that if R and S are fields, then the direct...Ch. 5.2 - [Type here] 23. Let be a Boolean ring with unity....Ch. 5.2 - If a0 in a field F, prove that for every bF the...Ch. 5.2 - Suppose S is a subset of an field F that contains...Ch. 5.3 - True or False Label each of the following...Ch. 5.3 - Prob. 2TFECh. 5.3 - Prob. 3TFECh. 5.3 - Prob. 4TFECh. 5.3 - Prob. 5TFECh. 5.3 - Prove that the multiplication defined 5.24 is a...Ch. 5.3 - Prove that addition is associative in Q.Ch. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - 7. Prove that on a given set of rings, the...Ch. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Since this section presents a method for...Ch. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - 14. Let be the set of all real numbers of the...Ch. 5.3 - Prob. 15ECh. 5.3 - Prove that any field that contains an intergral...Ch. 5.3 - Prob. 17ECh. 5.3 - 18. Let be the smallest subring of the field of...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - True or False Label each of the following...Ch. 5.4 - Prob. 5TFECh. 5.4 - Complete the proof of Theorem 5.30 by providing...Ch. 5.4 - 2. Prove the following statements for arbitrary...Ch. 5.4 - Prove the following statements for arbitrary...Ch. 5.4 - Suppose a and b have multiplicative inverses in an...Ch. 5.4 - 5. Prove that the equation has no solution in an...Ch. 5.4 - 6. Prove that if is any element of an ordered...Ch. 5.4 - For an element x of an ordered integral domain D,...Ch. 5.4 - If x and y are elements of an ordered integral...Ch. 5.4 - 9. If denotes the unity element in an integral...Ch. 5.4 - 10. An ordered field is an ordered integral domain...Ch. 5.4 - 11. (See Exercise 10.) According to Definition...Ch. 5.4 - 12. (See Exercise 10 and 11.) If each is...Ch. 5.4 - 13. Prove that if and are rational numbers such...Ch. 5.4 - 14. a. If is an ordered integral domain, prove...Ch. 5.4 - 15. (See Exercise .) If and with and in ,...Ch. 5.4 - If x and y are positive rational numbers, prove...
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY