Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.39PP

A cylindrical block of wood is 1.00 m in diameter and 1.00 m long and has a specific weight of 8.00   k N / m 3 . Will it float in a stable manner in water with its axis vertical?

Blurred answer
Students have asked these similar questions
right cylindrical object has a diameter of 1526 mm and a height of 2.1m. The density of water is 1000 kg/m3. If the right cylindrical object is placed in the water, what is the buoyant force?
Situation. A right circular cylinder having a diameter of 1.00 m and weighing 900 N is held in position by an anchor block such that 0.30 m of the cylinder is below the surface of the water with its axis vertical. The anchor block has a volume of 0.50 cubic meters and weighs 24 kN per cubic meter in air. Assume sea water to have specific gravity of 1.03. Neglecting the weight and volume of the cable. 1. Evaluate the buoyant force on the cylinder for the position described, in kN. O 2.15 O 4.25 O 2.95 O 2.38 2. Evaluate the tensile force in wire for the given draft, in kN. 0 3.25 0 3.95 01.48 01.95 3. Evaluate the rise in the tide that will lift the anchor from the bottom of the sea, in meters. 00.53 0 0.69 00.96 00.44
A platform of volume 1.00 x 105 m g and density 927 kg/m 3 floats in seawater (density = 1024 kg/m 3 ). Draw and label a free body diagram representing the platform in the seawater. Calculate the volume of the platform that is above the water-line (i.e. not submerged). I need this answered urgently please.

Chapter 5 Solutions

Applied Fluid Mechanics (7th Edition)

Ch. 5 - If the aluminum weights described in Problem 5.10...Ch. 5 - Figure 5.20 shows a cube floating in a fluid....Ch. 5 - A hydrometer is a device for indicating the...Ch. 5 - For the hydrometer designed in Problem 5.13 what...Ch. 5 - For the hydrometer designed in Problem 5.13 , what...Ch. 5 - A buoy is to support a cone-shaped instrument...Ch. 5 - A cube has side dimensions of 18.00 in. It is made...Ch. 5 - A cube has side dimensions of 18.00 in. It is made...Ch. 5 - A ship has a mass of 292 Mg. Compute the volume of...Ch. 5 - An iceberg has a specific weight of 8.72kN/m3....Ch. 5 - A cylindrical log has a diameter of 450 mm and a...Ch. 5 - The cylinder shown in Fig. 5.23 is made from a...Ch. 5 - If the cylinder from Problem 5.22 is placed in...Ch. 5 - A brass weight is to be attached to the bottom of...Ch. 5 - For the cylinder with the added brass (described...Ch. 5 - For the composite cylinder shown in Fig. 5.25 what...Ch. 5 - A vessel for a special experiment has a hollow...Ch. 5 - A light foam cup similar to a disposable coffee...Ch. 5 - A light foam cup similar to a disposable coffee...Ch. 5 - Repeat Problem 5.29, but consider that the steel...Ch. 5 - Figure 5.27 shows a raft made of four hollow drums...Ch. 5 - Figure 5.28 shows the construction of the platform...Ch. 5 - For the raft shown in Fig. 5.27, how much of the...Ch. 5 - For the raft and platform shown in Figs. 5.27 and...Ch. 5 - A float in an ocean harbor is made from a uniform...Ch. 5 - Describe how the situation described in Problem...Ch. 5 - A cube 6.00 in on a side is made from aluminum...Ch. 5 - Prob. 5.38PPCh. 5 - A cylindrical block of wood is 1.00 m in diameter...Ch. 5 - A container for an emergency beacon is a...Ch. 5 - The large platform shown in Fig. 5.29 carries...Ch. 5 - Will the cylindrical float described in Problem...Ch. 5 - Will the buoy described in Problem 5.5 be stable...Ch. 5 - Will the float described in Problem 5.6 be stable...Ch. 5 - A closed, hollow, empty drum has a diameter of...Ch. 5 - Figure 5.30 shows a river scow used to carry bulk...Ch. 5 - Prob. 5.47PPCh. 5 - For the vessel shown in Fig. 5.26and described in...Ch. 5 - For the foam cup described in Problem 5.28, will...Ch. 5 - Referring to Problem 5.29, assume that the steel...Ch. 5 - Referring to Problem 5.30, assume that the steel...Ch. 5 - Prob. 5.52PPCh. 5 - Will the cylinder together with the brass plate...Ch. 5 - A proposed design for a part of a seawall consists...Ch. 5 - A platform is being designed to support some water...Ch. 5 - Prob. 5.56PPCh. 5 - A barge is 60 ft long, 20 ft wide, and 8 ft deep....Ch. 5 - If the barge in Problem 5.57 is loaded with 240000...Ch. 5 - A piece of cork having a specific weight of...Ch. 5 - Figure 5.20 shows a cube floating in a fluid, (a)...Ch. 5 - A boat is shown in Fig. 5.33(a). Its geometry at...Ch. 5 - (a) If the cone shown in Fig. 5.34 is made of pine...Ch. 5 - Refer to Fig. 5.35. The vessel shown is to be used...Ch. 5 - Prob. 5.64PPCh. 5 - Wetsuits are prohibited in some triathlons due to...Ch. 5 - A cylinder that is 500 mm in diameter and 2.0 m...Ch. 5 - The diving bell shown in Fig. 5.2 weighs 72 kN and...Ch. 5 - Prob. 5.68PPCh. 5 - A scuba diver with wet suit, tank, and gear has a...Ch. 5 - Prob. 5.70PPCh. 5 - Does steel float? It has a specific gravity of...Ch. 5 - Prob. 5.72PPCh. 5 - An undersea camera (Figure 5.36 ) is to hang from...Ch. 5 - Work Problem 5.73 again, but this time the camera...Ch. 5 - Write a program for evaluating the stability of a...Ch. 5 - For any cylinder of a uniform density floating in...Ch. 5 - For the results found in Project 2, compute the...Ch. 5 - Write a program for evaluating the stability of a...Ch. 5 - Write a program for determining the stability of a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY