Concept explainers
(a)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
A chiral center must be an
The given molecule is identified as achiral on the basis of the presence of a chiral center.
(b)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is a chiral molecule.
Explanation of Solution
The structure of the given molecule is
In this molecule, the nitrogen atom is a chiral center bonded to four different groups
The given molecule is identified as chiral on the basis of the presence of a chiral center.
(c)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is a chiral molecule.
Explanation of Solution
The structure of the given molecule is
The molecule consists of a ring made up of five carbon atoms and one nitrogen atom. The nitrogen atom is bonded to three different groups having pyramidal shape and a non-bonded electron pair pointing to the unoccupied tetrahedral corner. This makes the nitrogen a chiral center.
As this molecule has only one chiral center, it cannot possess any symmetry, and hence, this is a chiral molecule.
The given molecule is identified as chiral on the basis of the presence of a chiral center.
(d)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
A chiral center must be an
Therefore, these carbon atoms are also not chiral centers. Hence this is not a chiral center.
The given molecule is identified as achiral on the basis of the presence of a chiral center.
(e)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
The given molecule possesses two chiral carbons. One carbon is bonded to four different groups,
As the bonded atoms are not exactly same, the molecule does not have a symmetry plane; hence, it is a chiral molecule.
The given molecule is identified as chiral on the basis of the presence of a chiral center.
(f)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
The given molecule possesses an inversion center indicated by the blue dot, which reflects all the atoms into identical atoms through
As the molecule has an inversion center, it is not a chiral molecule.
The given molecule is identified as achiral on the basis of the presence of a chiral center.
(g)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
The given molecule possesses two chiral carbons bonded to four different groups,
The given molecule is identified as chiral on the basis of the presence of a chiral center.
(h)
Interpretation:
It is to be identified whether the given molecule is chiral.
Concept introduction:
The molecule with at least one chiral center having no plane of symmetry is called a chiral molecule. A chiral center is a tetrahedral stereocenter. The atom at the chiral center must be
Answer to Problem 5.38P
The given molecule is not a chiral molecule.
Explanation of Solution
The structure of the given molecule is
The molecule consists of a ring made up of four carbon atoms and one oxygen atom with a substituted methyl group. The carbon having the methyl substituent is a chiral center that has four different groups bonded.
The molecule does not possess any symmetry plane; hence, it is a chiral molecule.
The given molecule is identified as chiral on the basis of the presence of a chiral center.
Want to see more full solutions like this?
Chapter 5 Solutions
Organic Chemistry: Principles And Mechanisms
- Redraw the compound given, determine which are the chiral centers and identify them all.arrow_forwardDetermine if the molecule shown below is chiral. A) chiral B) achiral + N C) chiral but the two isomeric forms interconvert rapidly. 4 +arrow_forwardConsider the molecule shown here. (a) How many chiral centers does it have? (b) How many total configurational isomers are possible? Hint: Determine whether it is possible for any of the configurational isomers to be meso. OH OH OH HO TH. OH OH OHarrow_forward
- Nonearrow_forwardDraw a structural formula of the R configuration of the compound shown below.arrow_forward[Review Topics) References] M Identify the absolute configuration of the chirality centers in each of the following compounds as R or S. Note: if multiple chirality centers are present, indicate the stereochemical designations as: RR, SS, RS, or SR (Other terms used for chirality center include chiral center, stereocenter, and stereogenic center.) M MD M CH3 req N. req NH2 req HO2C НО-С 9 more group attempts remaining Retry Entire Group Submit Answer Nes Previous Save and Exit 7:01 PM ) E 10/30/2019arrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning