Essential University Physics: Volume 1 (3rd Edition)
Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 1FTD

Compare the net force on a heavy trunk when it’s (a) at rest on the floor; (b) being slid across the floor at constant speed; (c) being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk; and (d) sliding down a frictionless ramp.

(a)

Expert Solution
Check Mark
To determine
The net force on a heavy trunk when it is at rest on the floor.

Answer to Problem 1FTD

The net force on a heavy trunk when it is at rest on the floor is zero.

Explanation of Solution

According to Newton’s first law of motion a body will remain in rest until it is acted upon by external unbalanced force. Therefore the net force acting on a body at rest is zero.

The forces acting on a body are weight of the body which is down ward and normal reaction which is upward. For a body at rest on the floor therefore the normal reaction will be equal to that of weight of the body. Thus net force will be zero.

Conclusion:

Thus, the net force on a heavy trunk when it is at rest on the floor is zero.

(b)

Expert Solution
Check Mark
To determine
The net force on a heavy trunk when it is being slid across the floor at constant speed.

Answer to Problem 1FTD

The net force on a heavy trunk when it is being slid across the floor at constant speed is zero.

Explanation of Solution

According to Newton’s first law of motion a body will remain in uniform motion until it is acted upon by external unbalanced force. Therefore the net force acting on a body in uniform motion is zero.

The forces acting on the trunk are the weight of the trunk which is acting downward and normal reaction which is acting upward, driving force along the direction of motion, air resistance opposite to the direction of force and friction opposite to the direction of motion. The normal reaction balances weight of the trunk and driving force balances the sum of air resistance and friction. Thus net force acting on a constant speed car is zero.

Conclusion:

Thus, the net force on a heavy trunk when it is being slid across the floor at constant speed is zero.

(c)

Expert Solution
Check Mark
To determine
The net force on a heavy trunk when it is being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk.

Answer to Problem 1FTD

The net force on a heavy trunk when it is being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk is zero.

Explanation of Solution

According to Newton’s first law of motion a body will remain in uniform motion until it is acted upon by external unbalanced force.

The forces acting on the elevator and trunk is the weight of the body acting downward and tension of the cable acting upward. Since both are same net force acting on the system is zero. Thus total acceleration is zero. Therefore net force on elevator and trunk is zero.

Conclusion:

Thus, the net force on a heavy trunk when it is being pulled upward in an elevator whose cable tension equals the combined weight of the elevator and trunk is zero

(d)

Expert Solution
Check Mark
To determine
The net force on a heavy trunk when it is sliding down a frictionless ramp.

Answer to Problem 1FTD

The net force on a heavy trunk when it is sliding down a frictionless ramp is downward.

Explanation of Solution

According to Newton’s first law of motion a body will move with acceleration only if there is any net force acting on it.

The trunk sliding down is similar to free fall. The only force is the weight of the body which is downward. Therefore net force on the trunk is downward.

Conclusion:

Thus, the net force on a heavy trunk when it is sliding down a frictionless ramp is downward.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose you have a 120 kg wooden crate resting on a wood floor, with coefficient of static friction 0.500 between these wood surfaces. (a) What maximum force can you exert horizontally on the crate without moving it? (b) If you continue to exert this force once the crate starts to slip, what will its acceleration then be? The coefficient of sliding friction is known to be 0.300 for this situation.
When a 100 N bag of nails hangs motionless from a single vertical strand of rope, how many newtons of tension are exerted in the strand?  What if the bag is supported by four vertical strands?
A crate with a mass of 155 kg, starting from rest, slides down a ramp making an angle of 32 degrees with respect to horizontal. The ramp is 3 meters long. A constant frictional force of 100 N acts throughout the motion and a force F is being applied by a rope as shown to prevent the block from sliding too fast.

Chapter 5 Solutions

Essential University Physics: Volume 1 (3rd Edition)

Ch. 5 - Gravity pulls a satellite toward Earths center. So...Ch. 5 - Explain why a car with ABS brakes can have a...Ch. 5 - A fishing line has a 20-lb breaking strength. Is...Ch. 5 - Two blocks rest on slopes of unequal angles,...Ch. 5 - Youre on a plane undergoing a banked turn, so...Ch. 5 - A backcountry skier weighing 700 N skis down a...Ch. 5 - Two forces, both in the x-y plane, act on a...Ch. 5 - Two forces act on a 3.1-kg mass that undergoes...Ch. 5 - At what angle should you tilt an air table to...Ch. 5 - A skier starts from rest at the top of a 24 slope...Ch. 5 - A tow truck is connected to a 1400-kg car by a...Ch. 5 - Studies of gymnasts show that their high rate of...Ch. 5 - Find the minimum slope angle for which the skier...Ch. 5 - Section 5.2 Multiple Objects Your 12-kg baby...Ch. 5 - If the left-hand slope in Fig. 5.30 makes a 60...Ch. 5 - Suppose the angles shown in Fig. 5.30 are 60 and...Ch. 5 - Two unfortunate climbers, roped together, are...Ch. 5 - Suppose the Moon were held in its orbit not by...Ch. 5 - Show that the force needed to keep a mass m in a...Ch. 5 - A 940-g rock is whirled in a horizontal circle at...Ch. 5 - Youre investigating a subway accident in which a...Ch. 5 - A tetherball on a 1.55-m rope is struck so that it...Ch. 5 - An airplane goes into a turn 3.6 km in radius. If...Ch. 5 - Movers slide a 73-kg file cabinet along a floor...Ch. 5 - A hockey puck is given an initial speed of 14 m/s....Ch. 5 - Starting from rest, a skier slides 100 m down a 28...Ch. 5 - A car moving at 40 km/h negotiates a 130-m-radius...Ch. 5 - Prob. 34PCh. 5 - A block is launched with initial speed 2.2 m/s up...Ch. 5 - In the process of mitosis (cell division), two...Ch. 5 - A 14.6-kg monkey hangs from the middle of a...Ch. 5 - A camper hangs a 26-kg pack between two trees...Ch. 5 - A mass m, undergoes circular motion of radius R on...Ch. 5 - Patients with severe leg breaks arc often placed...Ch. 5 - Riders on the Great American Revolution...Ch. 5 - A 45-kg skater rounds a 5.0-m-radius turn at 6.3...Ch. 5 - When a piano turns, it banks as shown in Fig. 5.35...Ch. 5 - You whirl a bucket of water in a vertical circle...Ch. 5 - A child sleds down an 8.5 slope at constant speed....Ch. 5 - The handle of a 22-kg lawnmower makes a 35 angle...Ch. 5 - Repeal Example 5.4, now assuming that the...Ch. 5 - A bat crashes into the vertical front of an...Ch. 5 - The coefficient of static friction between steel...Ch. 5 - A bug crawls outward from the center of a CD...Ch. 5 - A 310-g paperback book rests on a 1.2-kg textbook....Ch. 5 - Children sled down a41-m-long hill inclined at 25....Ch. 5 - In a typical front-wheel-drive car, 70% of the...Ch. 5 - A police officer investigating an accident...Ch. 5 - A slide inclined at 35 takes bathers into a...Ch. 5 - You try to move a heavy trunk, pushing down and...Ch. 5 - A block is shoved up a 22 slope with an initial...Ch. 5 - At the end of a factory production line, boxes...Ch. 5 - Youre in traffic court, arguing against a speeding...Ch. 5 - A space station is in the shape of a hollow ring,...Ch. 5 - In a loop-the-loop roller coaster, show that a car...Ch. 5 - Find an expression for the minimum frictional...Ch. 5 - An astronaut is training in an earthbound...Ch. 5 - You stand on a spring scale at the north pole and...Ch. 5 - Driving in thick fog on a horizontal road, you...Ch. 5 - A block is projected up an incline at angle . It...Ch. 5 - A 2.1-kg mass is connected to a spring with spring...Ch. 5 - Take k = 0.75 in Example 5.11, and plot the...Ch. 5 - Repeat the preceding problem for an arbitrary...Ch. 5 - Moving through a liquid, an object of mass m...Ch. 5 - Suppose the object in Problem 70 had an initial...Ch. 5 - A block is launched with speed v0 up a slope...Ch. 5 - A florist asks you to make a window display with...Ch. 5 - Youre al the state fair. A sideshow barker claims...Ch. 5 - One of the limiting factors in high-performance...Ch. 5 - Figure 5.39 shows an apparatus used to verify...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY