Statics and Mechanics of Materials, Student Value Edition (5th Edition)
5th Edition
ISBN: 9780134382890
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 2PP
Draw the free-body diagram of each object.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
II. Draw the free-body diagram of parts A, B, C, D and E of the following structure:
Find the centre of mass of the object below.
Let the lengths be: d1 = 160mm, d2 = 270 mm, d3= 200 mm, d4 = 210 mm, d5 = 300mm, d6 = 240mm.
The figure shows a mechanical model of the Russel fracture traction device and the leg. The leg is held in balance in the position indicated by the two weights attached to the two cables. The total weight of the leg and the cast is W=200 N. The horizontal distance between points A and B where the cables are attached to the leg is L=100 cm and the vertical distance is d=10 cm . Point C is the center of gravity of the cast and leg at three quarters of the L measured from point A ( 3L/4= 75 cm) . The angle that cable 2 makes with the horizontal is measured as β=40 ° . Accordingly, in order for the leg to remain in balance in the position shown;
a) Find the tensile force T 1 in cable 1 . (Write your result in N )
b) Find the tensile force T 2 in cable 2 . (Write your result in N )
c) Find the angle α of cable 1 with the horizontal
Chapter 4 Solutions
Statics and Mechanics of Materials, Student Value Edition (5th Edition)
Ch. 4.4 - Draw the free-body diagram of each object. Prob....Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - Determine the horizontal and vertical components...Ch. 4.4 - The truss is supported by a pin at A and a roller...Ch. 4.4 - Determine the components of reaction at the fixed...Ch. 4.4 - The 25-kg bar has a center of mass at G. If it is...Ch. 4.4 - Determine the reactions at the smooth contact...Ch. 4.4 - Determine the components of the support reactions...Ch. 4.4 - Determine the reactions at the supports. Prob. 4-2Ch. 4.4 - Determine the horizontal and vertical components...
Ch. 4.4 - Determine the reactions at the supports. Prob. 4-4Ch. 4.4 - Determine the reactions at the supports. Prob. 4-5Ch. 4.4 - Determine the reactions at the supports. Prob. 4-6Ch. 4.4 - Determine the magnitude of force at the pin A and...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The dimensions of a jib crane are given in the...Ch. 4.4 - The smooth pipe rests against the opening at the...Ch. 4.4 - The beam is horizontal and the springs are...Ch. 4.4 - The 10-kg uniform rod is pinned at end A. If it is...Ch. 4.4 - The man uses the hand truck to move material up...Ch. 4.4 - Three uniform books, each having a weight W and...Ch. 4.4 - Determine the reactions at the pin A and the...Ch. 4.4 - If rope BC will fail when the tension becomes 50...Ch. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - The cantilever footing is used to support a wall...Ch. 4.4 - Prob. 20PCh. 4.4 - A boy stands out at the end of the diving board,...Ch. 4.4 - Prob. 22PCh. 4.4 - Prob. 23PCh. 4.4 - Prob. 24PCh. 4.4 - Prob. 25PCh. 4.4 - The man attempts to pull the four wheeler up the...Ch. 4.6 - Draw the free-body diagram of each object.Ch. 4.6 - In each case, write the moment equations about the...Ch. 4.6 - Prob. 7FPCh. 4.6 - Prob. 8FPCh. 4.6 - The rod is supported by smooth journal bearings at...Ch. 4.6 - Determine the support reactions at the smooth...Ch. 4.6 - Determine the force developed in the short link...Ch. 4.6 - Determine the components of reaction that the...Ch. 4.6 - The uniform load has a mass of 600 kg and is...Ch. 4.6 - Due to an unequal distribution of fuel in the wing...Ch. 4.6 - Determine the components of reaction at the fixed...Ch. 4.6 - The 50-lb mulching machine has a center of gravity...Ch. 4.6 - Prob. 30PCh. 4.6 - The uniform concrete slab has a mass of 2400 kg....Ch. 4.6 - Prob. 32PCh. 4.6 - Determine the tension in each cable and the...Ch. 4.6 - The bent rod is supported at A, B, and C by smooth...Ch. 4.6 - Prob. 35PCh. 4.6 - The bar AB is supported by two smooth collars. At...Ch. 4.6 - The rod has a weight of 6 lb/ft. If it is...Ch. 4.6 - The sign has a mass of 100 kg with center of mass...Ch. 4.6 - Both pulleys cite fixed to the shaft and as the...Ch. 4.6 - Both pulleys are fixed to the shaft and as the...Ch. 4.6 - Prob. 41PCh. 4.8 - Determine the friction force at the surface of...Ch. 4.8 - Determine the couple moment M needed to cause...Ch. 4.8 - Prob. 6PPCh. 4.8 - Prob. 7PPCh. 4.8 - Prob. 13FPCh. 4.8 - Determine the minimum force P to prevent the 30-kg...Ch. 4.8 - Determine the maximum force P that can be applied...Ch. 4.8 - Prob. 16FPCh. 4.8 - Prob. 17FPCh. 4.8 - Prob. 18FPCh. 4.8 - Prob. 19FPCh. 4.8 - If the coefficient of static friction at all...Ch. 4.8 - Prob. 21FPCh. 4.8 - Prob. 42PCh. 4.8 - The tractor exerts a towing force T = 400 lb....Ch. 4.8 - The mine car and its contents have a total mass of...Ch. 4.8 - The winch on the truck is used to hoist the...Ch. 4.8 - Prob. 46PCh. 4.8 - The automobile has a mass of 2 Mg and center of...Ch. 4.8 - Prob. 48PCh. 4.8 - Prob. 49PCh. 4.8 - Prob. 50PCh. 4.8 - Determine the angle at which the applied force P...Ch. 4.8 - Prob. 52PCh. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The 180-lb man climbs up the ladder and stops at...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The spool of wire having a weight of 300 lb rests...Ch. 4.8 - The ring has a mass of 0.5 kg and is resting on...Ch. 4.8 - Determine the smallest force P that must be...Ch. 4.8 - The man having a weight of 200 lb pushes...Ch. 4.8 - The uniform hoop of weight W is subjected to the...Ch. 4.8 - Prob. 61PCh. 4.8 - Prob. 62PCh. 4.8 - Prob. 63PCh. 4.8 - The coefficient of static Friction between the...Ch. 4 - If the roller at B can sustain a maximum load of 3...Ch. 4 - Determine the reactions at the supports A and B...Ch. 4 - Determine the normal reaction at the roller A and...Ch. 4 - Determine the horizontal and vertical components...Ch. 4 - Determine the x, y, z components of reaction at...Ch. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - The uniform 60-kg crate C rests uniformly on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the stable equilibrium position of the system described in Prob. 10.56 if m = 2.06 kg.arrow_forwardThe uniform 240-lb bar AB is held in the position shown by the cable AC. Compute the tension in the cable.arrow_forwardThe homogeneous bar AB weighs 25 lb. Determine the magnitudes of the forces acting on the bar at A and B. Neglect friction.arrow_forward
- Needs Complete typed solution with complete explanation and 100 % accuracy.arrow_forwardThe figure shows the Russel fracture traction device and a mechanical model of the leg. The leg is held in balance in the position indicated by the two weights attached to the two cables. The combined weight of the leg and cast is W=180 N. The horizontal distance between points A and B where the cables are attached to the leg is L=100 cm and the vertical distance is d=5 cm. Point C is the center of gravity of the cast and leg at three quarters of the L measured from point A (3L/4= 75 cm). The angle that cable 2 makes with the horizontal is measured as β=30°. Accordingly, in order for the leg to remain in balance in the shown position; a) Find the tensile force T1 in cable 1. (Write your result in N) Answerb) Find the tensile force T2 in cable 2. (Write your result in N) Answerc) Find the angle α of cable 1 with the horizontal. Responsearrow_forwardFigure(a) depicts a head-on view of a 1000 kg mass private airplane flying in a state of equilibrium. The force labeled P represents the lift force acting on each wing, and W represents the gravitational weight of the craft. Fig. (b) depicts a more detailed view of the wing ABCD showing its physical dimensions and the assumed location of the lift force P. The wing has a mass of 200 kg and a center of gravity at point B. The wing is attached to the fuselage at point A, which can be modeled as a pin connection. The wing is supported by a pin-connected strut BE whose mass may be neglected. (a) Sketch a free-body diagram of the forces acting on the wing depicted in Fig (b). Compute the vertical lift force P. (c) Compute the forces supported by the strut BE and the pin at A. Hint: You may model the wing as a two-dimensional structure where all forces lie in the same plane. (a) P XERO y W (b) 1.4 m + 2 m B с 0.6m 2.4m Darrow_forward
- The figure shows the Russel fracture traction device and a mechanical model of the leg. The leg is held in balance in the position indicated by the two weights attached to the two cables. The combined weight of the leg and the cast is W=210 N. The horizontal distance between points A and B where the cables are attached to the leg is L=100 cm and the vertical distance is d=6 cm. Point C is the center of gravity of the cast and leg at three quarters of the L measured from point A (3L/4= 75 cm). The angle that cable 2 makes with the horizontal is measured as β=33°. Accordingly, in order for the leg to remain in balance in the shown position; a) Find the tensile force T1 in cable 1. (Write your result in N) b) Find the tensile force T2 in cable 2. (Write your result in N) c) Find the angle α of cable 1 with the horizontal.arrow_forward1. Based on the attached figure: Determine the x and y components of reaction at ‘C’ using scalar notation. Determine the x and z components of reaction at ‘B’ using scalar notation. Determine the x and z components of reaction at ‘A’ using scalar notation.arrow_forwardThe 300kn sphere is supported by a pull p and a 200kn weight passing over a frictionless pulley. If a=30°. Computer the value of p and tangent.arrow_forward
- Find the equivalent mass (equation) if it were placed at point B.arrow_forwardplease define the system and provide the free-body diagram with x-y-axisarrow_forwardThe figure shows the Russel fracture traction device and a mechanical model of the leg. The leg is held in balance in the position indicated by the two weights attached to the two cables. The total weight of the leg and the cast is W=250 N. The distance between the points A and B where the cables are attached to the leg is given as L=100 cm and the angle of the leg with the horizontal is γ=6°. Point C is the center of gravity of the cast and leg at three quarters of the L measured from point A (3L/4= 75 cm). The angle that cable 2 makes with the horizontal is measured as β=40°. Accordingly, in order for the leg to remain in balance in the shown position; a) Find the tensile force T1 in cable 1. (Write your result in N) Answerb) Find the tensile force T2 in cable 2. (Write your result in N) Answerc) Find the angle α of cable 1 with the horizontal. Responsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Chemical and Phase Equilibrium; Author: LearnChemE;https://www.youtube.com/watch?v=SWhZkU7e8yw;License: Standard Youtube License