Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.5, Problem 78P
A piston–cylinder device contains 4 kg of argon at 250 kPa and 35°C. During a quasi-equilibrium, isothermal expansion process, 15 kJ of boundary work is done by the system, and 3 kJ of paddle-wheel work is done on the system. Determine the heat transfer for this process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
36
2) Use the method of MEMBERS to determine the true magnitude and
direction of the forces in members1 and 2 of the frame shown below
in Fig 3.2.
300lbs/ft
member-1
member-2
30°
Fig 3.2.
https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/View
Can you solve this for me?
5670 mm
The apartment in the ground floor of three floors building in Fig. in Baghdad city. The details of
walls, roof, windows and door are shown. The window is a double glazing and air space thickness
is 1.3cm Poorly Fitted-with Storm Sash with wood strip and storm window of 0.6 cm glass
thickness. The thickness of door is 2.5 cm. The door is Poor Installation. There are two peoples
in each room. The height of room is 280 cm. assume the indoor design conditions are 25°C DBT
and 50 RH, and moisture content of 8 gw/kga. The moisture content of outdoor is 10.5 gw/kga.
Calculate heat gain for living room :
الشقة في الطابق الأرضي من مبنى ثلاثة طوابق في مدينة بغداد يظهر في مخطط الشقة تفاصيل الجدران والسقف
والنوافذ والباب. النافذة عبارة عن زجاج مزدوج وسمك الفراغ الهوائي 1.3 سم ضعيف الاحكام مع ساتر حماية مع إطار
خشبي والنافذة بسماكة زجاج 0.6 سم سماكة الباب 2.5 سم. الباب هو تركيب ضعيف هناك شخصان في كل غرفة.
ارتفاع الغرفة 280 سم. افترض أن ظروف التصميم الداخلي هي DBT25 و R50 ، ومحتوى الرطوبة 8…
Chapter 4 Solutions
Thermodynamics: An Engineering Approach
Ch. 4.5 - An ideal gas at a given state expands to a fixed...Ch. 4.5 - Nitrogen at an initial state of 300 K, 150 kPa,...Ch. 4.5 - 4–3 The volume of 1 kg of helium in a...Ch. 4.5 - 4–4E Calculate the total work, in Btu, for process...Ch. 4.5 - 4–5 A piston–cylinder device initially contains...Ch. 4.5 - A pistoncylinder device with a set of stops...Ch. 4.5 - 4–7 A piston–cylinder device initially contains...Ch. 4.5 - 4–8 A mass of 5 kg of saturated water vapor at 300...Ch. 4.5 - 1 m3 of saturated liquid water at 200C is expanded...Ch. 4.5 - A gas is compressed from an initial volume of 0.42...
Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - 4–14 A frictionless piston–cylinder device...Ch. 4.5 - Prob. 15PCh. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - 4–19E Hydrogen is contained in a piston–cylinder...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - Prob. 22PCh. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - 4–27E A closed system undergoes a process in which...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - Prob. 31PCh. 4.5 - Prob. 32PCh. 4.5 - Prob. 33PCh. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 -
4–35 A piston–cylinder device initially...Ch. 4.5 - Prob. 37PCh. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - Prob. 40PCh. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Prob. 49PCh. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - Prob. 51PCh. 4.5 - Prob. 52PCh. 4.5 - Prob. 53PCh. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Prob. 55PCh. 4.5 - Prob. 56PCh. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - 4–60E A rigid tank contains 10 Ibm of air at 30...Ch. 4.5 - 4–61E Nitrogen gas to 20 psia and 100°F initially...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - 4–63 A 4-m × 5-m × 6-m room is to be heated by a...Ch. 4.5 - 4-64 A student living in a 3-m × 4-m × 4-m...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - 4–66 Argon is compressed in a polytropic process...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - 4–68 A spring-loaded piston-cylinder device...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - Prob. 71PCh. 4.5 - Prob. 72PCh. 4.5 - Prob. 74PCh. 4.5 - Prob. 75PCh. 4.5 - Prob. 76PCh. 4.5 - 4–77 Air is contained in a piston-cylinder device...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Prob. 84PCh. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 87PCh. 4.5 - 4–88 In a manufacturing facility, 5-cm-diameter...Ch. 4.5 - Prob. 89PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 92PCh. 4.5 - Prob. 93PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 100PCh. 4.5 - Prob. 101PCh. 4.5 - Prob. 102PCh. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Prob. 114RPCh. 4.5 - 4–115 A mass of 12 kg of saturated...Ch. 4.5 - Prob. 116RPCh. 4.5 - Prob. 117RPCh. 4.5 - Prob. 118RPCh. 4.5 - Prob. 119RPCh. 4.5 - Prob. 120RPCh. 4.5 - Prob. 121RPCh. 4.5 - Prob. 122RPCh. 4.5 - Prob. 123RPCh. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Prob. 128RPCh. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 131RPCh. 4.5 - Prob. 133RPCh. 4.5 - Prob. 134RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Prob. 140RPCh. 4.5 - 4–141 One kilogram of carbon dioxide is compressed...Ch. 4.5 - Prob. 142RPCh. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144FEPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - Prob. 146FEPCh. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - Prob. 148FEPCh. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - Prob. 152FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - 4–156 An apple with an average mass of 0.18 kg and...Ch. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - Prob. 159FEPCh. 4.5 - Prob. 161FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How do i solve this problem?arrow_forwardQ4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward
- - | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forwardA direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.arrow_forwardFor hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)arrow_forward
- : +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrararrow_forward: +0 العنوان use only In conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D.-0.5mm, how many die stands are required to complete this process. онarrow_forwardIn non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and vo-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: t₁: final thickness D₁ V. Fig. (1) Darrow_forward
- A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forwardIn conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D₁-0.5mm, how many die stands are required to complete this process.arrow_forwardA vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license