Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 45, Problem 59AP
(a)
To determine
To verify the disintegration energy for the individual sum is equal to the net reaction.
(b)
To determine
The net disintegration energy of the reactions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the two nuclear reactions I: A + B → C + E II: C + D → F + G(a) Show that the net disintegration energy for these two reactions (Qnet = QI + QII) is identical to the disintegration energy for the net reaction A + B + D → E + F + G(b) One chain of reactions in the Sun’s core is the protonproton cycle. Based on part (a), what is Qnet for this sequence?
We saw that, on Earth, the number flux of solar neutrinos from the p-p chain is 6.7E10 s-1 cm-2. Other nuclear reactions in the Sun supplement this neutrino flux with a small additional flux of higher-energy neutrinos. A neutrino detector in Japan, named Super Kamiokande, consists of a tank of 50kton of water, surrounded by photomultiplier tubes. The tubes detect the flash of Cerenkov radiation emitted by a recoiling electron when a high-energy neutrino scatters on it. Calculate the detection rate for neutrino scattering in events per day, if 10-6 of the solar neutrinos have a high enough energy to be detected by this experiment, and each electron poses a scattering cross section=10-43 cm. Hint: Consider the density of neutrino targets "seen" by an individual electron, with a relative velocity of c between the neutrinos and the electron, to obtain the rate at which one electron interacts with the incoming neutrinos, and multiply by the total number of electrons (I've already done this:…
The probability of two protons tunneling in the Sun's core is Ptunnel 1010. This means that out of each
1010 pairs of protons, one pair tunnels successfully. Make an estimate showing that this probability can
account for the 1038 fusion reactions that take place each second in the Sun's core. Hint: Assume that
the Sun's core contains about 40% of its mass.
Chapter 45 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 45.1 - When a nucleus undergoes fission, the two daughter...Ch. 45.2 - Prob. 45.2QQCh. 45.3 - Prob. 45.3QQCh. 45.4 - Prob. 45.4QQCh. 45 - Prob. 1OQCh. 45 - Prob. 2OQCh. 45 - Prob. 3OQCh. 45 - Prob. 4OQCh. 45 - Prob. 5OQCh. 45 - Prob. 6OQ
Ch. 45 - Prob. 7OQCh. 45 - Prob. 8OQCh. 45 - Prob. 9OQCh. 45 - Prob. 1CQCh. 45 - Prob. 2CQCh. 45 - Prob. 3CQCh. 45 - Prob. 4CQCh. 45 - Prob. 5CQCh. 45 - Prob. 6CQCh. 45 - Prob. 7CQCh. 45 - Prob. 8CQCh. 45 - Prob. 1PCh. 45 - Prob. 2PCh. 45 - Prob. 3PCh. 45 - Prob. 4PCh. 45 - Prob. 5PCh. 45 - Prob. 6PCh. 45 - Prob. 7PCh. 45 - Prob. 8PCh. 45 - Prob. 9PCh. 45 - Prob. 10PCh. 45 - Prob. 11PCh. 45 - Prob. 12PCh. 45 - Prob. 13PCh. 45 - Prob. 14PCh. 45 - Prob. 15PCh. 45 - Prob. 16PCh. 45 - Prob. 18PCh. 45 - Prob. 19PCh. 45 - Prob. 20PCh. 45 - Prob. 21PCh. 45 - Prob. 22PCh. 45 - Prob. 23PCh. 45 - Prob. 24PCh. 45 - Prob. 25PCh. 45 - Prob. 26PCh. 45 - Prob. 27PCh. 45 - Prob. 28PCh. 45 - Prob. 29PCh. 45 - Prob. 30PCh. 45 - Prob. 31PCh. 45 - Prob. 32PCh. 45 - Prob. 33PCh. 45 - Prob. 34PCh. 45 - Prob. 35PCh. 45 - Prob. 36PCh. 45 - Prob. 37PCh. 45 - Prob. 41PCh. 45 - Prob. 42PCh. 45 - Prob. 43PCh. 45 - Prob. 44PCh. 45 - Prob. 45PCh. 45 - Prob. 46APCh. 45 - Prob. 47APCh. 45 - Prob. 48APCh. 45 - Prob. 49APCh. 45 - Prob. 51APCh. 45 - Prob. 52APCh. 45 - Prob. 53APCh. 45 - Prob. 54APCh. 45 - Prob. 55APCh. 45 - Prob. 56APCh. 45 - Prob. 57APCh. 45 - Prob. 58APCh. 45 - Prob. 59APCh. 45 - Prob. 60APCh. 45 - Prob. 61APCh. 45 - Prob. 62APCh. 45 - Prob. 63APCh. 45 - Prob. 64APCh. 45 - Prob. 65APCh. 45 - Prob. 66APCh. 45 - Prob. 67APCh. 45 - Prob. 68APCh. 45 - Prob. 69APCh. 45 - Prob. 70APCh. 45 - Prob. 71APCh. 45 - Prob. 72APCh. 45 - Prob. 73AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- About 2% of the energy generated in the Sun’s core by the p-p reaction is carried out of the Sun by neutrinos. Is the energy associated with this neutrino flux equal to, greater than, or less than the energy radiated from the Sun’s surface as electromagnetic radiation?arrow_forwardThe 2-H formed in the first reaction has less mass than the two 1-H that form it; the missing mass converts to other forms of energy according to E = mc2 (this ultimately is the energy source that keeps the Sun's core at 15 million degrees Celsius). You will find the amount of mass converted to energy by carefully using a calculator. Using the numbers in the Atomic Mass column, calculate H + H- D. Type the entire calculator answer carefully. [it should be positive, similar in style %3D to 0.002179] (1) (2) Element (3) Symbol (4) Mass Number, (5) Atomic Mass (6) % Abundance (or Radioactive Decay Mode) (7) Half-life Atomic Number Z. (if radioactive) (Neutron) 1.008665 10.4 min Hydrogen Deuterium Tritium H. 1.007825 2.014102 99.985% 0.015% 3 3.016049 12.33 yr Helium Не 3 3.016029 4.002602 0.000137% 99.999863% 4 Lithium Li 6. 6.015121 7.016003 7.5% 92.5% 7 4 Beryllium Be 7.016928 EC, 7 53.29 days 9. 9.012182 100%arrow_forwardSr-90 (A=90, Z = 38) decays via B decay. Calculate the energy of the antineutrino (in keV) if the beta particle has a kinetic energy of (2.82x10^2) keV. %3D Note you can look the atomic masses up online or in the appendix of the textbook 1, Assume all the energy released are shared by the kinetic energy of the beta particle and antineutrino. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: х10 Answerarrow_forward
- Suppose the proton-proton cycle in the Sun were to slow down suddenly and generate energy at only 95% of its current rate. Would an observer on Earth see an immediate decrease in the Sun’s brightness? Would she immediately see a decrease in the number of neutrinos emitted by the Sun?arrow_forwardWhy is fission not an important energy source in the Sun?arrow_forwardEnergy generation in the Sun arises because hydrogen nuclei fuse to form helium nuclei. Write down the reactions involved in the proton-proton chain. State which reaction in the chain controls the rate at which the full set of reactions proceeds and explain why this is the case. Given that the solar luminosity is L = 3.8 × 1026 W, the combined mass of four protons is 6.690 × 10−27 kg and the mass of one helium nucleus is 6.643 × 10−27 kg, estimate the number of helium nuclei that have been generated inside the Sun over its 4.6 × 109 year life time.arrow_forward
- Calculate the nuclear binding energy for a helium-5 atom (isotopic mass = 5.012057 u), a sodium-22 atom (isotopic = 21.99443742 u), and a cobalt-60 atom (isotopic mass = 59.9338222 u) I will provide an example for this question. See the imagearrow_forwardThe decay of 238U to 206 Pb has a half life of 4.46 Giga-years (billions of years, Gy). A rock is found to contain 4.06 mg of 238U and 2.32 mg of 206 Pb. Assuming that the rock contained no lead at the time of formation, determine the age of the rock in units of Giga-years (billions of years, Gy) to an accuracy of 1 decimal place.arrow_forwardThe half-lives of 235U and 238U are 7.04 × 108 years and 4.47 × 109 years, respectively, and the present abundance ratio is 238U>235U 5 137.7. It is thought that their abundance ratio was 1 at some time before our earth and solar system were formed about 4.5 × 109 years ago. Estimate how long ago the supernova occurred that supposedly produced all the uranium isotopes in equal abundance, including the two longest lived isotopes, 238U and 235U.arrow_forward
- Why does a star’s temperature increase as fusion proceeds? Why are higher temperatures required for the carbon cycle than for the proton-proton chain?arrow_forwardRecall that the solar constant—the flux of solar energy reaching Earth’s vicinity—is about 1,400 W/m2. If the Sun’s energy originates in the proton-proton cycle, at what rate (kg/s) does the Sun lose mass? Compare the yearly mass loss with the Sun’s total mass. Mass rate = 4.404 x 10^9 kg/sarrow_forwardAssume that the core of the Sun has one-eighth of the Sun’s mass and is compressed within a sphere whose radius is one-fourth of the solar radius.Assume further that the composition of the core is 31% hydrogen by mass and that essentially all the Sun’s energy is generated there. If the Sun continues to burn hydrogen at the current rate of 6.33E11 kg/s, how long, in years, will it be before the hydrogen is entirely consumed? Mass of the Sun is 2.0x1030 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning