
Calculus (MindTap Course List)
11th Edition
ISBN: 9781337275347
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.4, Problem 56E
To determine
To calculate: The average of the function f(x)=4x3−3x2 over the interval [0,1] and the values of x where the function takes the same value as its average value.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Evaluate the definite integral using the given integration limits and the limits obtained by trigonometric substitution.
14
x²
dx
249
(a) the given integration limits
(b) the limits obtained by trigonometric substitution
Assignment #1
Q1: Test the following series for convergence. Specify the test you use:
1
n+5
(-1)n
a) Σn=o
√n²+1
b) Σn=1 n√n+3
c) Σn=1 (2n+1)3
3n
1
d) Σn=1 3n-1
e) Σn=1
4+4n
answer problem 1a, 1b, 1c, 1d, and 1e and show work/ explain how you got the answer
Chapter 4 Solutions
Calculus (MindTap Course List)
Ch. 4.1 - CONCEPT CHECK Antiderivative What does it mean for...Ch. 4.1 - Antiderivatives Can two different functions both...Ch. 4.1 - Particular Solution What is a particular solution...Ch. 4.1 - Prob. 4ECh. 4.1 - Integration and Differentiation In Exercises 5 and...Ch. 4.1 - Integration and Differentiation In Exercises 5 and...Ch. 4.1 - Solving a Differential Equation In Exercises 7-10,...Ch. 4.1 - Prob. 8ECh. 4.1 - Prob. 9ECh. 4.1 - Solving a Differential Equation In Exercises 7-10,...
Ch. 4.1 - Prob. 11ECh. 4.1 - Rewriting Before Integrating In Exercises 11-14,...Ch. 4.1 - Rewriting Before Integrating In Exercises 11-14,...Ch. 4.1 - Prob. 14ECh. 4.1 - Prob. 15ECh. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Prob. 19ECh. 4.1 - Prob. 20ECh. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Prob. 28ECh. 4.1 - Prob. 23ECh. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Prob. 30ECh. 4.1 - Prob. 21ECh. 4.1 - Prob. 22ECh. 4.1 - Prob. 33ECh. 4.1 - Prob. 34ECh. 4.1 - Finding an Indefinite Integral In Exercises 15-36,...Ch. 4.1 - Prob. 36ECh. 4.1 - Prob. 31ECh. 4.1 - Prob. 32ECh. 4.1 - Finding a Particular Solution In Exercises 37-44,...Ch. 4.1 - Finding a Particular Solution In Exercises 37-44,...Ch. 4.1 - Prob. 39ECh. 4.1 - Prob. 40ECh. 4.1 - Prob. 41ECh. 4.1 - Finding a Particular Solution In Exercises 37-44,...Ch. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Slope Field In Exercises 45 and 46, a differential...Ch. 4.1 - Prob. 46ECh. 4.1 - Prob. 47ECh. 4.1 - Prob. 48ECh. 4.1 - EXPLORING CONCEPTS Sketching a Graph In Exercises...Ch. 4.1 - Sketching a Graph In Exercises 49 and 50, the...Ch. 4.1 - Prob. 51ECh. 4.1 - HOW DO YOU SEE IT? Use the graph of f shown in the...Ch. 4.1 - Horizontal Tangent Find a function f such that the...Ch. 4.1 - Prob. 54ECh. 4.1 - Tree Growth An evergreen nursery usually sells a...Ch. 4.1 - Population Growth The rate of growth dP/dt of a...Ch. 4.1 - Vertical Motion In Exercises 57-59, assume the...Ch. 4.1 - Vertical Motion In Exercises 57-59, assume the...Ch. 4.1 - Prob. 59ECh. 4.1 - Vertical Motion In Exercises 60-62, assume the...Ch. 4.1 - Prob. 61ECh. 4.1 - Prob. 62ECh. 4.1 - Lunar Gravity On the moon, the acceleration of a...Ch. 4.1 - Prob. 64ECh. 4.1 - Prob. 65ECh. 4.1 - Prob. 66ECh. 4.1 - Prob. 67ECh. 4.1 - Prob. 68ECh. 4.1 - Acceleration The maker of an automobile advertises...Ch. 4.1 - Deceleration A car traveling at 45 miles per hour...Ch. 4.1 - Prob. 71ECh. 4.1 - Prob. 72ECh. 4.1 - True or False? In Exercises 73 and 74, determine...Ch. 4.1 - Prob. 74ECh. 4.1 - Prob. 79ECh. 4.1 - Prob. 80ECh. 4.1 - True or False? In Exercises 73-78, determine...Ch. 4.1 - Prob. 76ECh. 4.1 - Prob. 77ECh. 4.1 - Prob. 81ECh. 4.1 - Prob. 78ECh. 4.2 - CONCEPT CHECK Sigma Notation What are the index of...Ch. 4.2 - Prob. 2ECh. 4.2 - Prob. 3ECh. 4.2 - Prob. 4ECh. 4.2 - Finding a Sum In Exercises 5-10, find the sum by...Ch. 4.2 - Prob. 6ECh. 4.2 - Finding a Sum In Exercises 5-10, find the sum by...Ch. 4.2 - Prob. 8ECh. 4.2 - Finding a Sum In Exercises 5-10, find the sum by...Ch. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - Prob. 12ECh. 4.2 - Prob. 13ECh. 4.2 - Prob. 14ECh. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Evaluating a Sum In Exercises 17-24, use the...Ch. 4.2 - Prob. 20ECh. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 - Evaluating a Sum In Exercises 1724, use the...Ch. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Prob. 27ECh. 4.2 - Evaluating a Sum In Exercises 25-28, use the...Ch. 4.2 - Prob. 29ECh. 4.2 - Approximating the Area of a Plane Region In...Ch. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.2 - Prob. 35ECh. 4.2 - Using Upper and Lower Sums In Exercises 35 and 36,...Ch. 4.2 - Prob. 37ECh. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Prob. 40ECh. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Finding Upper and Lower Sums for a Region In...Ch. 4.2 - Numerical Reasoning Consider a triangle of area 2...Ch. 4.2 - Numerical Reasoning Consider a triangle of area 4...Ch. 4.2 - Prob. 47ECh. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.2 - Prob. 57ECh. 4.2 - Prob. 58ECh. 4.2 - Prob. 59ECh. 4.2 - Prob. 60ECh. 4.2 - Prob. 61ECh. 4.2 - Prob. 62ECh. 4.2 - Prob. 63ECh. 4.2 - Prob. 64ECh. 4.2 - Prob. 65ECh. 4.2 - Prob. 66ECh. 4.2 - Prob. 67ECh. 4.2 - EXPLORING CONCEPTS Approximation A function is...Ch. 4.2 - Prob. 69ECh. 4.2 - EXPLORING CONCEPTS Midpoint Rule Does the Midpoint...Ch. 4.2 - Graphical Reasoning Consider the region bounded by...Ch. 4.2 - Prob. 72ECh. 4.2 - Prob. 73ECh. 4.2 - Prob. 74ECh. 4.2 - Prob. 75ECh. 4.2 - Prob. 76ECh. 4.2 - Seating Capacity A teacher places n scats to form...Ch. 4.2 - Proof Prove each formula by mathematical...Ch. 4.2 - PUTNAM EXAM CHALLENGE A dart, thrown at random,...Ch. 4.3 - CONCEPT CHECK Riemann Sum What does a Riemann Mini...Ch. 4.3 - CONCEPT CHECK Definite Integral Explain how to...Ch. 4.3 - Evaluating a Limit In Exercises 3 and 4, use...Ch. 4.3 - Evaluating a Limit In Exercises 3 and 4, use...Ch. 4.3 - Evaluating a Definite Integral as a Limit In...Ch. 4.3 - Evaluating a Definite Integral as a Limit In...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Writing a Definite Integral In Exercises 13-22,...Ch. 4.3 - Writing a Definite Integral In Exercises 13-22,...Ch. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Evaluating a Definite Integral Using a Geometric...Ch. 4.3 - Evaluating a Definite Integral Using a Geometric...Ch. 4.3 - Evaluating a Definite Integral Using a Geometric...Ch. 4.3 - Evaluating a Definite Integral Using a Geometric...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - Prob. 31ECh. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Using Properties of Definite Integrals Given...Ch. 4.3 - Using Properties of Definite Integrals Given...Ch. 4.3 - Prob. 43ECh. 4.3 - Using Properties of Definite Integrals Given...Ch. 4.3 - Prob. 45ECh. 4.3 - Estimating a Definite Integral Use the table of...Ch. 4.3 - Think About It The graph of f consists of line...Ch. 4.3 - Think About It The graph of f consists of line...Ch. 4.3 - Think About It Consider a function f that is...Ch. 4.3 - HOW DO YOU SEE IT? Use the figure to fill in the...Ch. 4.3 - Prob. 51ECh. 4.3 - Think About It A function f is defined below. Use...Ch. 4.3 - Prob. 53ECh. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Finding Values In Exercises 59-62, find possible...Ch. 4.3 - Prob. 60ECh. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Prob. 64ECh. 4.3 - Prob. 65ECh. 4.3 - True or False? In Exercises 63-68, determine...Ch. 4.3 - Prob. 67ECh. 4.3 - Prob. 68ECh. 4.3 - Prob. 69ECh. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - Prob. 72ECh. 4.3 - Prob. 73ECh. 4.3 - Prob. 74ECh. 4.3 - Prob. 75ECh. 4.3 - Finding Values Find the constants a and b, where...Ch. 4.3 - Prob. 77ECh. 4.3 - Prob. 78ECh. 4.3 - Prob. 79ECh. 4.4 - CONCEPT CHECK Fundamental Theorem of Calculus...Ch. 4.4 - CONCEPT CHECK Mean Value Theorem Describe the...Ch. 4.4 - CONCEPT CHECK Average Value of a Function...Ch. 4.4 - Prob. 4ECh. 4.4 - Graphical Reasoning In Exercises 58, use a...Ch. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Evaluating a Definite Integral In Exercises 936,...Ch. 4.4 - Prob. 14ECh. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Evaluating a Definite Integral In Exercises 936,...Ch. 4.4 - Evaluating a Definite Integral In Exercises 936,...Ch. 4.4 - Prob. 19ECh. 4.4 - Prob. 20ECh. 4.4 - Prob. 21ECh. 4.4 - Prob. 22ECh. 4.4 - Prob. 23ECh. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Evaluating a Definite Integral In Exercises 936,...Ch. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Prob. 37ECh. 4.4 - Finding the Area of a Region In Exercises 3740,...Ch. 4.4 - Prob. 39ECh. 4.4 - Prob. 40ECh. 4.4 - Finding the Area of a Region In Exercises 41-46,...Ch. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - Finding the Area of a Region In Exercises 41-46,...Ch. 4.4 - Prob. 44ECh. 4.4 - Prob. 46ECh. 4.4 - Prob. 47ECh. 4.4 - Prob. 48ECh. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - Using the Mean Value Theorem for Integrals In...Ch. 4.4 - Using the Mean Value Theorem for Integrals In...Ch. 4.4 - Finding the Average Value of a Function In...Ch. 4.4 - Finding the Average Value of a Function In...Ch. 4.4 - Prob. 55ECh. 4.4 - Prob. 56ECh. 4.4 - Prob. 57ECh. 4.4 - Prob. 58ECh. 4.4 - Force The force F (in newtons) of a hydraulic...Ch. 4.4 - Respiratory Cycle The volume V in liters, of air...Ch. 4.4 - Buffons Needle Experiment A horizontal plane is...Ch. 4.4 - HOW DO YOU SEE IT? The graph of f is shown in the...Ch. 4.4 - Prob. 63ECh. 4.4 - Prob. 64ECh. 4.4 - Prob. 65ECh. 4.4 - Evaluating a Definite Integral In Exercises 65 and...Ch. 4.4 - Analyzing a Function Let g(x)=0xf(t)dt where f is...Ch. 4.4 - Analyzing a Function Let g(x)=0xf(t)dt where f is...Ch. 4.4 - Prob. 69ECh. 4.4 - Prob. 70ECh. 4.4 - Prob. 71ECh. 4.4 - Prob. 72ECh. 4.4 - Prob. 73ECh. 4.4 - Prob. 74ECh. 4.4 - Using the Second Fundamental Theorem of Calculus...Ch. 4.4 - Prob. 76ECh. 4.4 - Prob. 77ECh. 4.4 - Prob. 78ECh. 4.4 - Prob. 79ECh. 4.4 - Prob. 80ECh. 4.4 - Prob. 81ECh. 4.4 - Prob. 82ECh. 4.4 - Prob. 83ECh. 4.4 - Prob. 84ECh. 4.4 - Prob. 85ECh. 4.4 - Prob. 86ECh. 4.4 - Prob. 87ECh. 4.4 - Prob. 88ECh. 4.4 - Water Flow Water flows from a storage tank at a...Ch. 4.4 - Oil Leak At 1:00 p.m., oil begins leaking from a...Ch. 4.4 - Prob. 91ECh. 4.4 - Velocity The graph shows the velocity, in feet per...Ch. 4.4 - Prob. 93ECh. 4.4 - Prob. 94ECh. 4.4 - Prob. 95ECh. 4.4 - Prob. 96ECh. 4.4 - Prob. 97ECh. 4.4 - Prob. 98ECh. 4.4 - Prob. 99ECh. 4.4 - EXPLORING CONCEPTS Rate of Growth Let r'(t)...Ch. 4.4 - Prob. 101ECh. 4.4 - Prob. 102ECh. 4.4 - Prob. 103ECh. 4.4 - Particle Motion Repeat Exercise 103 for the...Ch. 4.4 - Prob. 105ECh. 4.4 - Prob. 106ECh. 4.4 - Prob. 107ECh. 4.4 - Prob. 108ECh. 4.4 - Prob. 109ECh. 4.4 - Prob. 110ECh. 4.4 - Analyzing a Function Show that the function...Ch. 4.4 - Prob. 112ECh. 4.4 - Prob. 113ECh. 4.4 - Prob. 114ECh. 4.4 - Prob. 115ECh. 4.5 - CONCEPT CHECK Constant Multiple Rule Explain how...Ch. 4.5 - Prob. 2ECh. 4.5 - Prob. 3ECh. 4.5 - CONCEPT CHECK Analyzing the Integrand Without...Ch. 4.5 - Recognizing Patterns In Exercises 5-8, complete...Ch. 4.5 - Prob. 6ECh. 4.5 - Prob. 7ECh. 4.5 - Prob. 8ECh. 4.5 - Finding an Indefinite Integral In Exercises 9-30,...Ch. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - Prob. 12ECh. 4.5 - Prob. 13ECh. 4.5 - Prob. 14ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 18ECh. 4.5 - Finding an Indefinite Integral In Exercises 9-30,...Ch. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Finding an Indefinite Integral In Exercises 9-30,...Ch. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Finding an Indefinite Integral In Exercises 9-30,...Ch. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Slope Field In Exercises 35 and 36, a differential...Ch. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Differential Equation In Exercises 37 and 38, the...Ch. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4.5 - Prob. 45ECh. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Prob. 49ECh. 4.5 - Prob. 50ECh. 4.5 - Prob. 53ECh. 4.5 - Prob. 54ECh. 4.5 - Prob. 55ECh. 4.5 - Change of Variables In Exercises 53-60, find the...Ch. 4.5 - Prob. 57ECh. 4.5 - Prob. 58ECh. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 71ECh. 4.5 - Prob. 72ECh. 4.5 - Prob. 61ECh. 4.5 - Prob. 62ECh. 4.5 - Prob. 63ECh. 4.5 - Prob. 64ECh. 4.5 - Prob. 65ECh. 4.5 - Prob. 66ECh. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Prob. 69ECh. 4.5 - Finding the Area of a Region In Exercises 69-72,...Ch. 4.5 - Prob. 73ECh. 4.5 - Prob. 74ECh. 4.5 - Prob. 75ECh. 4.5 - Even and Odd Functions In Exercises 73-76,...Ch. 4.5 - Prob. 77ECh. 4.5 - Prob. 78ECh. 4.5 - Prob. 79ECh. 4.5 - Prob. 80ECh. 4.5 - Prob. 81ECh. 4.5 - Prob. 82ECh. 4.5 - Prob. 83ECh. 4.5 - Prob. 84ECh. 4.5 - Sales The sales S (in thousands of units) of a...Ch. 4.5 - Prob. 86ECh. 4.5 - Prob. 87ECh. 4.5 - Prob. 88ECh. 4.5 - Prob. 89ECh. 4.5 - Prob. 90ECh. 4.5 - Prob. 91ECh. 4.5 - Prob. 92ECh. 4.5 - Prob. 93ECh. 4.5 - Prob. 94ECh. 4.5 - Prob. 95ECh. 4.5 - Prob. 96ECh. 4.5 - Prob. 97ECh. 4.5 - Prob. 98ECh. 4.5 - Prob. 99ECh. 4.5 - Prob. 100ECh. 4.5 - Prob. 101ECh. 4.5 - Prob. 102ECh. 4.5 - Prob. 103ECh. 4.5 - Prob. 104ECh. 4 - Finding an Indefinite Integral In Exercises 1-8,...Ch. 4 - Finding an Indefinite Integral In Exercises 1-8,...Ch. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 8RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Vertical Motion A ball is thrown vertically upward...Ch. 4 - Vertical Motion With what initial velocity must an...Ch. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 21RECh. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Prob. 27RECh. 4 - Finding Upper and Lower Sums for a Region In...Ch. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 43RECh. 4 - Prob. 46RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 49RECh. 4 - Prob. 52RECh. 4 - Prob. 44RECh. 4 - Prob. 45RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - Prob. 57RECh. 4 - Using the Second Fundamental Theorem of Calculus...Ch. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Finding an Indefinite Integral In Exercises 59-66,...Ch. 4 - Prob. 59RECh. 4 - Prob. 63RECh. 4 - Prob. 61RECh. 4 - Prob. 62RECh. 4 - Prob. 64RECh. 4 - Prob. 65RECh. 4 - Prob. 66RECh. 4 - Prob. 67RECh. 4 - Prob. 68RECh. 4 - Prob. 69RECh. 4 - Prob. 70RECh. 4 - Prob. 71RECh. 4 - Prob. 72RECh. 4 - Prob. 73RECh. 4 - Prob. 74RECh. 4 - Prob. 75RECh. 4 - Prob. 76RECh. 4 - Prob. 1PSCh. 4 - Parabolic Arch Archimedes showed that the area of...Ch. 4 - Prob. 14PSCh. 4 - Prob. 5PSCh. 4 - Approximation TheTwo-Point Gaussian Quadrature...Ch. 4 - Extrema and Points of Inflection The graph of the...Ch. 4 - Prob. 8PSCh. 4 - Prob. 9PSCh. 4 - Prob. 10PSCh. 4 - Prob. 11PSCh. 4 - Prob. 12PSCh. 4 - Prob. 13PSCh. 4 - Velocity and Acceleration A car travels in a...Ch. 4 - Prob. 16PSCh. 4 - Prob. 17PSCh. 4 - Prob. 3PSCh. 4 - Prob. 4PSCh. 4 - Sine Integral Function The sine integral function...Ch. 4 - Prob. 19PSCh. 4 - Prob. 20PSCh. 4 - Prob. 21PS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Provethat a) prove that for any irrational numbers there exists? asequence of rational numbers Xn converg to S. b) let S: RR be a sunctions-t. f(x)=(x-1) arc tan (x), xe Q 3(x-1) 1+x² x&Q Show that lim f(x)= 0 14x C) For any set A define the set -A=yarrow_forwardQ2: Find the interval and radius of convergence for the following series: Σ n=1 (-1)η-1 xn narrow_forward8. Evaluate arctan x dx a) xartanx 2 2 In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d) (arctanx)² + C 2 9) Evaluate Inx³ dx 3 a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C - x 10) Determine which integral is obtained when the substitution x = So¹² √1 - x²dx sine is made in the integral πT π π a) √ sin cos e de b) √ cos² de c) c Ꮎ Ꮎ cos² 0 de c) cos e de d) for cos² e de πT 11. Evaluate tan³xdx 1 a) b) c) [1 - In 2] 2 2 c) [1 − In2] d)½½[1+ In 2]arrow_forward
- 12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward
- 2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forwardQuestion 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward
- 3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY