WILEY PLUS 1 SEMESTER ACCESS CODE + LOOS
WILEY PLUS 1 SEMESTER ACCESS CODE + LOOS
11th Edition
ISBN: 9781119680758
Author: Halliday
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 37P
To determine

To:

(a) show that the energy E of a photon corresponding to the maximum wavelength given by Wien’s Law λmax =  (2898 μm·K)/T is

E = (4.28 x10-10 MeV/K) T.

(b) calculate the minimum temperature required for a photon to create an electron-positron pair.

Blurred answer
Students have asked these similar questions
This question relates to the practicality of searching for intelligent life in other solar systems by detecting their radio broadcasts (or aliens find us from ours). The closest stars are 4 light years away from us. How far away must you be from a 460 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically. The area of a sphere is 4??24πr2. b) How many lightyears away is this?
Consider a black body of surface area 22.0 cm² and temperature 5700 K. (a) How much power does it radiate? 131675.5 W (b) At what wavelength does it radiate most intensely? 508.421 nm (c) Find the spectral power per wavelength at this wavelength. Remember that the Planck intensity is "intensity per unit wavelength", with units of W/m³, and "power per unit wavelength" is equal to that intensity times the surface area, with units of W/m 131.5775 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W/m
The Red Supergiant Betelgeuse. The star Betelgeuse has a surface temperature of 3000 K and is 600 times the diameter of our sun. (If our sun were that large, we would be inside it!) Assume that it radiates like an ideal blackbody. (a) If Betelgeuse were to radiate all of its energy at the peak intensity wavelength, how many photons per second would it radiate? (b) Find the ratio of the power radiated by Betelgeuse to the power radiated by our sun (at 5800 K).
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning