Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 11P
(a)
To determine
The energy of the photon in electron volts for transition from
(b)
To determine
The wavelength of the photon emitted in transition from
(c)
To determine
Frequency of the emitted photon in transition from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state. In the absence of an external magnetic field, what is the wavelength of this photon?
An electron in a hydrogen atom makes a transition from the n=1 state to the n=3 state
(1eV= 1.6 x10^-19 J and h = 6.63 x 10^-34 J s= 4.136 x 10^-15 Ev/hz c =3.0 x10^8 m/s)
what is the energy of the photon absorbed in transition and what is the frequency of the absorbed photon energy?
An electron in the hydrogen atom makes a transition from an energy state of principal quantum number ni to the n = 2 state. If the photon emitted has a wavelength of 434 nm, what is the value of ni?
Enter just the value of ni, and not the whole expression (e.g., do not enter n = 2).
Chapter 42 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardSuppose an electron in a hydrogen atom makes a transition from the (n+1) th orbit to the nth orbit. Is the wavelength of the emitted photon longer for larger values of n, or for smaller values of n?arrow_forwardA photon is emitted when a hydrogen atom undergoes a transition from the n = 9 state to the n = 1 state. Calculate values for the following. (a) the wavelength (in nm) (b) the frequency (in Hz) (c) the energy of the emitted photon (eV)arrow_forward
- A Bohr-like atom has a ground state energy (n=1) of -41.4eV. An electron makes a transition from the n=4 state to the n=2 state. The emitted photon is then incident onto a metal surface with a work function equal to 3.34eV. What is the wavelength (nm) of the emitted photon?HINT: Bohr-like atom means that the energy, En, of the n-th level scales as En=E1/n^2, where E1 is the ground state energy.arrow_forwardA hydrogen atom in an excited bound state labeled with prin- cipal quantum number n = 3 absorbs a photon that has wavelength l. The atom is ionized and the electron has kinetic energy 8.00 eV after it has left the atom. What was the wavelength I of the photon?arrow_forwardWhen a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the ground-state energy in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?arrow_forward
- A hydrogen atom is in its ground state. Incident on the atom is a photon having an energy of 10.5 eV. What is the result? (a) The atom is excited to a higher allowed state. (b) The atom is ionized. (c) The photon passes by the atom without interaction.arrow_forwardConsider photons incident on a hydrogen atom. (a) A transition from the n = 4 to the n = 7 excited-state requires the absorption of a photon of what minimum energy? eV(b) A transition from the n = 1 ground state to the n = 6 excited state requires the absorption of a photon of what minimum energy? eVarrow_forwardWhat are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with n = 4 to a state with n = 2? (a) Number 2.55 Units eV (b) Number 1.3617 Units kg-m/s or N-s (c) Number 4.865976353 Units This answer has no unitsarrow_forward
- A hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forwardAn atom in an excited state 1.95 eV above the ground state remains in that excited state 1.15 us before moving to the ground state. (a) Find the frequency of the emitted photon. THz (b) Find the wavelength of the emitted photon. nm (c) Find the approximate uncertainty in energy of the photon. ΔΕΣ peVarrow_forwardA hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state.If the atom is in a magnetic field in the +z direction and with a magnitude of 2.20 T, what is the shift in the wavelength of the photon from the zero-field value? Does the magnetic field increase or decrease the wavelength? Disregard the effect of electron spin.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning