Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 11P
To determine
To calculate:
(a) de Broglie wavelength for 200 MeV electrons.
(b) if these electrons suitable for determine the radius of a nuclei.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Nuclear radii may be measured by scattering highenergy (high speed) electrons from nuclei. (a) What is the de Broglie wavelength for 200 MeV electrons? (b) Are these electrons suitable probes for this purpose?
Nuclear radii may be measured by scattering high-energy electrons from nuclei. (a) What is the de Broglie wavelength for 172 MeV
electrons? (b) Are these electrons suitable probes for this purpose?
(a) Number
Units
(b)
Nuclear radii may be measured by scattering high-energy electrons from nuclei. (a) What is the de Broglie wavelength for 229 MeV
electrons? (b) Are these electrons suitable probes for this purpose?
(a) Number
5.42e-15
Units
fm
(b)
yes
Chapter 42 Solutions
Fundamentals of Physics Extended
Ch. 42 - Prob. 1QCh. 42 - Prob. 2QCh. 42 - Prob. 3QCh. 42 - Prob. 4QCh. 42 - Prob. 5QCh. 42 - Prob. 6QCh. 42 - Prob. 7QCh. 42 - Prob. 8QCh. 42 - Prob. 9QCh. 42 - Prob. 10Q
Ch. 42 - Prob. 11QCh. 42 - Prob. 12QCh. 42 - a Which of the following nuclides are magic:...Ch. 42 - Prob. 14QCh. 42 - Prob. 15QCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - A 10.2 MeV Li nucleus is shot directly at the...Ch. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 22PCh. 42 - Prob. 23PCh. 42 - A penny has a mass of 3.0 g. Calculate the energy...Ch. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - The half-life of a particular radioactive isotope...Ch. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Calculate the mass of a sample of initially pure...Ch. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - A dose of 8.60 Ci of a radioactive isotope is...Ch. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 42PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65PCh. 42 - Prob. 66PCh. 42 - Prob. 67PCh. 42 - Prob. 68PCh. 42 - Prob. 69PCh. 42 - Prob. 70PCh. 42 - Prob. 71PCh. 42 - Prob. 72PCh. 42 - Prob. 73PCh. 42 - Prob. 74PCh. 42 - Prob. 75PCh. 42 - Prob. 76PCh. 42 - Prob. 77PCh. 42 - Prob. 78PCh. 42 - Prob. 79PCh. 42 - Prob. 80PCh. 42 - Prob. 81PCh. 42 - Prob. 82PCh. 42 - Prob. 83PCh. 42 - Prob. 84PCh. 42 - Prob. 85PCh. 42 - Prob. 86PCh. 42 - Prob. 87PCh. 42 - Characteristic nuclear time is a useful but...Ch. 42 - Prob. 89PCh. 42 - Using a nuclidic chart, write the symbols for a...Ch. 42 - If the unit for atomic mass were defined so that...Ch. 42 - Prob. 92PCh. 42 - Prob. 93PCh. 42 - Prob. 94PCh. 42 - Prob. 95PCh. 42 - Prob. 96PCh. 42 - Prob. 97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- T1arrow_forwardWhat fraction of 5-MeV alpha particles will be scattered through an angle greater than 8° from a gold foil (Z=79, density = 19.3 g/cm^3) of thickness of 10^-8m?arrow_forwardIn a Rutherford scattering experiment, assume that an incident alpha particle (radius 1.80 fm) is headed directly toward a target gold nucleus (radius 6.23 fm).What energy must the alpha particle have to just barely “touch” the gold nucleus?arrow_forward
- The isotope of Nickel, 66Ni decays by β emission, has a half-life of 2.3 days. and the β particles have an average energy of 65 keV. A source consisting of this isotope has an initial number of atoms N0 = 5 x 1020 atoms. What is the power per unit area initially deposited by this source in a small target placed at 1m distance from the source? Select one: a. 1.45 W/m2 b. 7.6 MW/m2 c. 4.5 kW/m2 d. 35 W/m2arrow_forwardA 5 MeV α particle approach a gold nucleus with an impact parameter of 2.6 ×10−13 meter. Through what angle will it be scattered.arrow_forwardFree neutrons have a decay constant of 1.10 × 10-3 s-'. If the de Broglie wavelength of the neutrons in a parallel beam is 1 nm, determine the distance from the source where the beam intensity has dropped to half its starting value.arrow_forward
- Now the energy of a neutrino is measured at a specific time. If the uncertainty in the time measurement is 2.31 x 10-24 seconds, what is the minimum uncertainty in the energy?arrow_forwardA beam of 2 Mev neutrons is incident on a slab of heavy water (D2O). The total cross-sections of deuterium and oxygen at this energy are 2.6 b and 1.6 b, respectively. A) What is the macroscopic total cross section of D2O at 2 Mev? B) How thick must the slab be to reduce the intensity of uncollided beam by a factor of 10? C) If an incident neutron has a collision in the slab, what is the relative probability that it collides with deuterium?arrow_forwardIn a neutron-activation experiment, a flux of 108 neutrons/cm2sec is incident normally on a foil of area 1 cm?, density 1022 atoms/cm3 , and thickness 10-2 cm. The target nuclei have a total cross section for neutron capture of 1 barn (10-24 cm2), Find the number of b ( the light particle) per second ? 104 particle/sec 102 particle/sec 106 particle/sec 108 particle/sec Clear my choicearrow_forward
- What is the ratio of the velocity of a 5.00-MeV β ray to that of an α particle with the same kinetic energy? This should confirm that β s travel much faster than α s even when relativity is taken into consideration.arrow_forward(1) Alpha particles of kinetic energy 6.250 MeV are scattered at 90° by a gold foil. (a) What is the impact parameter? (b) What is the minimum distance between the alpha particles and the gold nucleus? (c) Find the kinetic and potential energies at that minimum distance.arrow_forwardتحويل الصوت إلى نص محادثة كاميرا ( الإنجليزية Q4: Using the principle of precision, prove the impossibility of electrons being present in the nucleus, noting that the nucleus diameter is described as 104 |arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning